Podium: Ranking Data Using Mixed-Initiative Visual Analytics
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Fig. 1: The Podium interface contains two primary views: (a) the main table, which displays each data point as a row in the table
and each attribute as a column; and (b) the control panel, which has controls for the visual encodings in the table, attribute weights,
and the underlying Ranking SVM model. The callout box (c) shows the Relative Rank column, which displays the current relative
position of the rows used to train the model as well as the previous user-defined relative rank. The interface is described in detail
in Section 4.1.

Abstract—People often rank and order data points as a vital part of making decisions. Multi-attribute ranking systems are a common
tool used to make these data-driven decisions. Such systems often take the form of a table-based visualization in which users assign
weights to the attributes representing the quantifiable importance of each attribute to a decision, which the system then uses to
compute a ranking of the data. However, these systems assume that users are able to quantify their conceptual understanding of how
important particular attributes are to a decision. This is not always easy or even possible for users to do. Rather, people often have a
more holistic understanding of the data. They form opinions that data point A is better than data point B but do not necessarily know
which attributes are important. To address these challenges, we present a visual analytic application to help people rank multi-variate
data points. We developed a prototype system, Podium, that allows users to drag rows in the table to rank order data points based
on their perception of the relative value of the data. Podium then infers a weighting model using Ranking SVM that satisfies the
user’s data preferences as closely as possible. Whereas past systems help users understand the relationships between data points
based on changes to attribute weights, our approach helps users to understand the attributes that might inform their understanding
of the data. We present two usage scenarios to describe some of the potential uses of our proposed technique: (1) understanding
which attributes contribute to a user’s subjective preferences for data, and (2) deconstructing attributes of importance for existing
rankings.Our proposed approach makes powerful machine learning techniques more usable to those who may not have expertise in
these areas.

Index Terms—Mixed-initiative visual analytics, multi-attribute ranking, user interaction.
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INTRODUCTION

Ranking of data points is one of the fundamental analytic operations
people perform as part of visual data analysis [1,24]. Rankings are
used for many reasons: to understand the most important items from
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a large dataset, to make a decision based on the attributes of the data,
or to give meaning to data that otherwise has no inherent order. Peo-
ple rank sports teams based on past statistics or regional pride. Critics
rank movies based on attributes like the quality of the cinematogra-
phy, how captivating the story is, and the reputation of the director.
Consumers rank cars based on horsepower, price, and fuel economy
in order to determine the right purchasing decision. Cyber security
analysts prioritize which network threats to analyze first. People also
compare established rankings with their expectations for how good or
bad individual data points are. For instance, experts publish rankings
of college football teams based on performance in areas like passing
yards, touchdowns, and penalties. Those rankings may bring up ques-
tions for fans, like why a particular team is at the top of a ranking given
their low offensive statistics.

Ranking models allow people to order a large set of data points and
gain an understanding of how data points relate to one another at the



attribute level. Users can modify attribute weights and see the result-
ing ranking of the data points. In the case of multivariate data, rank-
ing systems help people create order from complex data by allowing
users to define attribute weights based on how important they believe
each attribute is. The data points are then ordered so that the high-
est ranking data are those that most reflect the significant attributes
specified by the user. Specitying attribute weights directly is a flex-
ible and effective way to produce a ranking of data points. Systems
like ValueCharts [10] and LineUp [22] allow users to easily visual-
ize the results of rankings based on manually defined attribute weight
vectors. Further, they allow users to adjust attribute weights and see
how the data point rankings change. Current ranking systems create
an effective model of a user’s preferences when they know precisely
how important attributes are to their decision and remain agnostic to
the data points themselves.

However, people often have a better understanding of the holistic
relationships between data points as opposed to the absolute impor-
tance of attributes. That is, they might have an understanding of re-
lationships between data points but not know what attributes of the
data drive that understanding. For example, a person may prefer a
Toyota Camry over a Honda Civic but not know how to quantify the
importance of fuel economy, horsepower, and price. This problem be-
comes particularly relevant as the number of attributes that define a
dataset increase, and choosing which to emphasize and de-emphasize
becomes more difficult and cumbersome. Alternatively to quantifying
such preferences, Carterette et al. showed that people are cognitively
skilled at making relative judgments on data points (in this case, doc-
uments) [11]. When using ranking systems that require quantifying
attribute weights, users could consequently find themselves tweaking
the attribute weights in order to move a particularly favored data point
up in the ranking.

In this paper, we take a first step toward creating a model of at-
tribute weights based on users’ subjective preferences in the context of
multi-attribute ranking systems. While previous systems allow users
to adjust attribute weights and see changes in the rankings to better
understand the data, we address a different user task. Our work fo-
cuses on creating a technique to help users understand their subjec-
tive preferences as it relates to the data attributes. Hence we focus on
leveraging a user’s cognitive skills at making relative value judgments
about data points. We do this by inferring meaning from user interac-
tions. Interaction is a key component in visual analytics, facilitating
the understanding of potentially large and complex data. However, its
utility is greater than simply advancing a visualization from one state
to the next. User interactions form an external capture of the user’s
cognition [16,36] and can be used to infer a great deal about the user’s
analytic process [34] and cognitive state [6]. Thus, important to our
goal of capturing user preferences in an analytic model, we view in-
teraction as more than a facilitator for changing the visual state of the
system. That is, a user’s interactions are motivated by their goals and
influenced by their perceptual and cognitive processes, from which we
can derive meaning. Interaction is itself data.

We present a prototype system, Podium, to demonstrate our tech-
nique for allowing users to specify a subset ranking of data points,
from which corresponding attribute weights are computed and visual-
ized. To compute the attribute weights, we apply Ranking SVM [26],
using constraints generated from user interactions. As a result, the
computed model is used to rank the full dataset. We discuss two po-
tential usage scenarios for this technique: (1) illuminating users’ pref-
erences at the attribute level, and (2) deconstructing existing rankings.

The primary contributions of this work include:

1. A multi-attribute ranking prototype, Podium, that weights at-
tributes based on users’ subjective preferences for data points

2. A technique for generating constraints for Ranking SVM based
on user interactions

3. Two usage scenarios to demonstrate how the technique works

In Section 2, we discuss the foundations of this work with regard
to multi-attribute ranking visualization techniques, mathematical and
machine learning approaches for ranking, and mixed initiative visual

analytics. Section 3 discusses the notion of modeling a user’s prefer-
ences based on their interactions, and Section 4 describes the interface
of Podium and the techniques used to create a ranking based on the
user’s interactions. In Section 5, we describe two usage scenarios for
the system using a 2014 college football dataset. In Section 6, we de-
scribe preliminary feedback from users who were given a ranking task
to perform using Podium. Section 7 details some of the open ques-
tions and challenges we encountered, and Section 8 summarizes the
implications of this work.

2 RELATED WORK

In this section, we describe prior work relevant to the challenge
of our holistic mixed-initiative ranking approach, including previ-
ous multi-attribute ranking visualization techniques (Section 2.1), ma-
chine learning approaches to ranking (Section 2.2), mathematical tech-
niques for ranking (Section 2.3), and concepts and principles of mixed-
initiative visual analytics (Section 2.4).

2.1 Multi-Attribute Ranking Visualizations

Many systems exist for the visualization of multi-attribute rankings.
Spreadsheet programs like Microsoft Excel or Numbers for Mac are
commonly used for rankings by applying custom formulas to evaluate
tabular data. These systems focus on providing capabilities to gener-
ate, modify, and present tabular data and are not intended solely for
ranking. Rows (data points) can be sorted by some column (attribute),
but such systems do not natively support sorting based on combina-
tions of columns or attributes. Consequently, these systems require a
high level of formalism to define a ranking.

Many systems provide interactive interfaces especially for ranking.
TableLens is a specialized multi-attribute data visualization technique
that utilizes a fisheye technique to display large amounts of data in a
single view [37]. Similarly, ValueCharts [10] and LineUp [22] allow
users to create custom rankings by clicking and dragging columns to
interactively adjust the attribute weights used for the ranking. Users
are able to quickly see how changing the attribute weights affect the
ranking of the data points. However, these systems still require users
to specify attribute weights to produce a ranking of data points.

Other systems were designed for more domain-specific ranking
tasks. For example, some systems generate rankings while augment-
ing the visualization for time series data [42,45]. di Sciascio et al.
applied ranking visualization techniques to relevance scores of docu-
ment search results [14]. Behrisch et al. proposed an approach to vi-
sualize multiple rankings using a small multiples approach [3]. Their
technique utilized radial node-link glyphs to visualize the similarities
and differences between different rankings.

Our approach differs from previous work in that it allows users to
generalize their knowledge and opinions about a subset of data points
and apply it to rank the complete dataset. Users are not required to
quantify the importance of attributes; instead, they rank order data
points, and the system infers the respective attribute weights. The re-
sulting set of attribute weights thus represents a model of the user’s
subjective preferences.

2.2 Machine Learning

Machine learning has been used in visual analytic systems for various
purposes [18,40]. One purpose is information retrieval which refers
to locating information relevant to a particular problem or query, and
is analogous to our generalized ranking problem. Based on the user’s
exemplary rankings, we are interested in finding and ranking relevant
data. Metric learning has been used to address information retrieval
problems [31,33], wherein distance functions are learned so that sim-
ilar documents are near each other while dissimilar documents are far
apart. While it can be used to provide an ordered list of distances from
a query, metric learning approaches do not inherently have a notion
of order; therefore, while similar documents may appear near one an-
other, their relative order may not be preserved.

Learning to rank is another well-explored problem defined in ma-
chine learning. Learning to rank is typically approached from one of
three perspectives: (1) pointwise, (2) pairwise, or (3) listwise [32].



Pointwise learning to rank methods reduce ranking to a regression
problem [13], where individual data points are used to train a model.
Compared to pairwise and listwise approaches, Liu found that point-
wise regression-based approaches performed consistently worse on
ranking benchmark document retrieval data [32]. Liu [32] and Cao
et al. [9] advocate for listwise approaches, models trained using a full
input list of data. For our particular problem, however, listwise ap-
proaches would not be appropriate since they rely on being trained
with fully ranked lists. To simplify and generalize multi-attribute rank-
ings, the user should be able to rank a handful of data points, and the
system should compute the rest. Thus, we chose to use a pairwise ap-
proach, where the model is trained using pairwise constraints derived
from the subset of data the user ranked.

Several pairwise learning-to-rank algorithms exist, including neu-
ral network approaches like RankNet [7] and FRank [44], boosting
approaches like RankBoost [19] and AdaBoost [20], and SVM ap-
proaches like Ranking SVM [26] and IR-SVM [8]. Of the pairwise
learning-to-rank approaches, Liu found that Ranking SVM was one of
the most effective [32]. Thus, we have chosen to use Ranking SVM
as the underlying model in our prototype for deriving attribute weights
from user interactions. We discuss the alternatives to Ranking SVM in
more detail in Section 7.

2.3 Mathematical Models for Multi-Attribute Rankings

Many computational approaches exist in decision theory literature for
ranking items in a multi-attribute dataset. Zanakis et al. performed
a comparison of several methods for multi-attribute decision-making
(MADM) [48]. Among those methods were Simple Additive Weight-
ing (SAW), Multiplicative Exponent Weighting (MEW), Analytic Hi-
erarchy Process (AHP), Elimination and Choice Expressing Reality
(ELECTRE) [38], and Technique for Preference by Similarity to the
Ideal Solution (TOPSIS) [30]. These techniques mathematically eval-
uate multi-dimensional data points using a set of criteria (attributes)
and their respective levels of importance (weightings). Most com-
monly, people rank data points using a simple additive weighting ap-
proach. That is, they apply some weight to each attribute of a dataset,
where the weight is a representation of the given attribute’s importance
to the decision. The weights of the attributes sum to 1, intuitively
showing that each attribute comprises part of the whole decision. A
score is computed for each data point based on the summation of the
weighted attribute values. Data points are then ranked based on the
highest computed score.

Podium utilizes a SAW model to compute the ranking of data
points. A SAW model is intuitive for users to understand and serves as
a well-explored technique often used as a benchmark against which
other techniques are evaluated [48]. Further, as described in Sec-
tion 4.2, the underlying model we use, Ranking SVM, ultimately uses
a SAW model to determine the class or order of input data.

2.4 Mixed-Initiative Visual Analytics

Visual analytic technologies invoke cognitive processes and tasks that
help people think about data in the context of the world and phenom-
ena in it [27,43]. For example, many visual analytic techniques have
been proposed to help people perform the general activity of sense-
making [2,35,39]. This high-level activity consists of gathering data,
understanding relationships between the data, comparing the knowl-
edge gained from the exploration with one’s own understanding of the
world, forming hypotheses about information, and ultimately present-
ing insights to share with others.

More recently, there are examples of visual analytic systems that
adhere to design principles of mixed-initiative systems [25]. Horvitz
presented a set of principles to consider for mixed-initiative visual an-
alytics, including ensuring that adding automation increases real value
and considering capabilities for systems to continue to learn over time.
These principles advocate for a balance of effort between human op-
erators and machines, to promote a collaborative joint-system for the
purpose of solving a common goal or task. Thus, mixed-initiative vi-
sual analytics focuses on balancing human and machine effort while
performing a visual data exploration task. This balance is important,

as purely automating these tasks can result in erroneous results and
lack of user trust, while complete lack of automation results in a heavy
workload for the user.

Such mixed-initiative systems leverage users’ interactions with data
to infer their intentions and better inform analytical models. One such
system is Dis-Function, a technique presented by Brown et al. that
leverages automation to learn distance functions [5]. The approach
works by allowing users to directly adjust data points’ relative posi-
tions on a scatterplot. The system uses these interactions to create
models that are tuned to the user’s understanding of relationships be-
tween the data. Mixed-initiative approaches have also been applied to
dimension reduction techniques in scatterplots [4,17,28,29], to the in-
ference of a user’s intent in creating a visualization [41], and to make
data recommendations based on sensemaking activities [12]. In gen-
eral, these examples of mixed-initiative systems leverage a small sam-
ple of user interactions, approximate an analytical model, and use that
model to organize and visualize the remaining data.

Our prototype system, Podium, employs mixed-initiative principles
in order to provide users with powerful mathematical models that de-
scribe their preferences without the requirement that users be experts
in defining and parameterizing such models. With this approach, users
can directly manipulate data points by clicking and dragging them to
new positions in the table. The system then provides automated mod-
eling of those interactions to produce an attribute weight vector that
can enlighten the user about which attributes contribute to their prefer-
ences. While leveraging similar principles to balance human and ma-
chine effort, we build on previous work by demonstrating how mixed-
initiative approaches can benefit users of multi-attribute ranking sys-
tems to model their subjective preferences.

3 MODELING USER PREFERENCES

In previous work on ranking data points, systems allow users to mod-
ify attribute weights to see how the ordering of the data is affected.
Our proposed technique focuses instead on understanding how a user’s
subjective preferences and biases materialize in their interactions with
data. While recent work has focused on detecting and mitigating cog-
nitive bias in visual analytics [15,21,46,47], Green et al. note that
systems employed to counteract human biases can limit people’s abil-
ity to create effective mental models [23]. We confront this gap by
utilizing a user’s interactions to create a model of the data that better
reflects their cognitive perceptions. Specifically, we derive an attribute
weight vector based on the user’s interactions with the data using a
Ranking SVM [26] model. This weight vector represents an external
capture of the user’s mental model of the relative value of data points,
allowing users to reflect on the accuracy of their subjective preference
(or bias) towards the attributes used to rank data points. The result-
ing weight vector is then used in a Simple Additive Weighting (SAW)
model [48] to produce the full ranking of data points.

This approach to ranking may lead users to simply confirm their
existing biases about the data; however, the primary purpose of the
system is to allow such an exploration of the data in light of subjective
preferences or perceived value. By doing so, users can gain a better
understanding of the world in which their perception is truth. For ex-
ample, a user may arrange data points in the table to create a model
where a particularly favored data point is the top ranked item. When
the system attempts to model the user’s preferences, it may derive a
set of attribute weights that ultimately results in the preferred data
point being ranked below others that the user interacted with. The
user might then conclude that based on their perception of the data,
it simply is not possible to derive a model in which the data point is
the top ranked item. Alternatively, the system may be able to com-
pute a model, but it may result in attribute weights that do not fit the
user’s mental model. For example, consider a user ranking college
football teams so that their favorite team is on top. The system might
compute a model where offensive average points per game is given
negative weight. However, having a greater number of points seems
like it should be a positively weighted attribute that contributes to a
team’s success; thus, the user might conclude that although they love
their favorite team, it may not objectively be very good. Thus, our



proposed technique helps users to become more aware of how their
perception of the relationships between the data points may or may
not be grounded in the data.

4 PobDIUM

In this section, we describe Podium, a prototype multi-attribute rank-
ing system that models user interactions with data points. Podium
lets users demonstrate a preferred ranking of a subset of data points,
from which the user’s preferences are modeled and the remaining data
points are ranked to follow these preferences. In Section 4.1, we dis-
cuss the characteristics of the Podium interface in more detail. In Sec-
tion 4.2, we discuss the underlying techniques used by the system to
model a user’s preferences, and in Section 4.3, we discuss how we
visualize the contribution of each attribute to a data point’s ranking.

4.1 User Interface

The Podium interface is divided into two components: the main ta-
ble (Figure 1a) and the control panel (Figure 1b). The main table is
the main data view of the system. It shows a table where each row
is a data point and each column represents an attribute. The data are
ordered by their ranking, and initially the rank scores are computed as-
suming all attributes are equally important (see Section 4.2.3 for how).
Users can interact with the data in the table by clicking and dragging
rows to a new position. The control panel contains visualization and
model controls including the Compute Weights button, which causes
the system to derive a new set of attribute weights based on the user’s
interactions with the rows in the table. Pressing the Rank button will
apply the attribute weights to the dataset, ranking all of the rows in the
table according to their resulting rank scores.

4.1.1 Main Table

The main table contains the full set of data points and attribute values
(Figure 1a). The values in the three left-most columns are not part of
the loaded dataset, but are important values computed as the user inter-
acts with the system. The leftmost column contains the Absolute Rank
for the given data point. The table is always sorted by the Absolute
Rank column. The Relative Rank column shows the relative position
of each training row with respect to the other rows used to train the
underlying model. After the weight model is applied to the table, the
Relative Rank column shows the new relative position of the row as
well as the previous user-defined relative position (Figure 1c). This
helps users to see which constraints they specified were preserved by
the model and which were violated. The Rank Score column contains
bars that encode the score computed for each data point. Bars with a
larger width have a higher score than bars with a smaller width. The
computation for the rank score is described in Section 4.2.3. The exact
score encoded in the bars in the Rank Score column can be seen in a
tooltip by hovering over the bar.

Bar Overlay. Attribute values can be encoded as the width of bars
with the encoded values overlayed as text by checking the Show Bars
option in the control panel. The value of each attribute is encoded as
the width of the bar, making it easier to spot trends within the table.
This is similar to the technique used in TableLens to give people a
quick overview of data attributes and values [37].

Attribute Contribution. Each cell containing the value of an at-
tribute can be augmented to visualize the individual contribution of
each attribute to the data point’s rank score using the Show Contribu-
tion option from the control panel. The contribution value corresponds
to how much of the data point’s rank score is the result of the given at-
tribute value. Comparing an attribute’s actual value to its contribution
can be enlightening to the user. For example, a data point may have
an exceptionally high value for a particular attribute; however, if the
magnitude of the weight of that attribute is low, then the attribute may
not have much impact on the ranking of the data point. Contribution
values are visualized as thin vertical black bars, where the horizontal
position within the cell is a normalized value between 0 and 1, where
larger values correspond to a greater contribution of that attribute to
the data point’s rank score. The computation for the contribution is
explained further in Section 4.3.

Interactions. There is one primary interaction in the interface:
clicking and dragging rows (i.e., data points) to demonstrate the user’s
preferred ranking of a subset of the data points. The rows within the
table can be moved to a new position by click and drag. When a row
is moved to a new position, the row is colored according to how the
absolute rank changed. Red indicates that the row moved down, and
green indicates that the row moved up. The opacity of the color indi-
cates how far the row moved; lower opacity means that a row moved
less, while higher opacity means that a row moved farther. Rows in
the table may also be marked by clicking on the row. This changes
the background color of the absolute and relative rank cells to gray.
Rows that the user moved to a new position are marked automatically.
Marked rows are visually distinct and can thus be easily tracked as
they are re-ranked or re-positioned. All marked rows are ultimately
used to generate training tuples for SVM.

4.1.2 Control Panel

The control panel has three components: visual controls for the main
table (Figure 2a), attribute or minimap view (Figure 2b), and model
controls (Figure 2c¢).

The interface has three toggles for visual encodings in the main
table: Show Change, Show Bars, and Show Contribution (Figure 2a).
Show Change, when checked, colors the rows in the table that moved
as aresult of the user’s interactions: red when the row moves down and
green when the row moves up. For example, moving a data point from
row 2 up to row 1 would result in the moved data point being colored
green, while the point previously in row 1 would be colored red since
it moved down to row 2. This coloring scheme applies to both the
main table and the minimap. Show Bars and Show Contribution show
or hide the visual encoding of attribute values as bars in the table and
the vertical bars representing the contribution of each attribute to the
data point’s rank score, respectively. Figure 3 shows what the interface
looks like when all of the visual encoding toggles are activated.

The interface has two additional views: attributes and minimap
(Figure 2b).
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Fig. 2: The control panel is comprised of visual encoding controls
(a), additional views of the attribute weights (b), and controls for the
underlying models (c).
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Fig. 3: This figure shows the main table when the visual encoding
options Show Change, Show Bars, and Show Contribution are selected
in the control panel. (a) In addition to changing the color of the row
the user moved down to red (row 19), Show Change changes the colors
of the rows green that also moved up as a consequence (e.g., rows 16-
18). (b) Show Bars encodes attribute values as the width of the bars,
and Show Contribution adds the thin vertical black bars that represent
each attribute’s contribution to the data point’s rank score.

Attributes. The attributes tab (Figure 4a) visualizes the attribute
weight vector. Each attribute has a corresponding bar representing
its weight as a value between -1 and 1 (between -100% and 100%),
where bars representing negative weights are red and bars representing
positive weights are green. The weights can be directly adjusted by
clicking on the bar and dragging it to the left to decrease the weight or
to the right to increase the weight. When the Compute Weights button
is pressed, the widths of the bars will be updated based on the weights
computed by Ranking SVM. We chose this layout for representing
attribute weights over a direct column manipulation approach like that
used in LineUp [22] due to the inherent difficulties comparing relative
attribute values horizontally. The vertical positioning of the attribute
weight bars allows users to easily make comparisons between values.

Clicking on an attribute’s name toggles between three values. The
up arrow (4®) indicates that the user would like the model to produce
a higher weight for the given attribute. The down arrow (W) indicates
that the user would like the model to produce a lower weight for the
given attribute. The default option is a dash (=), which has no effect.
The up and down arrows result in additional constraints being added
to Ranking SVM, as described in Section 4.2.2.

Minimap. The minimap (Figure 4b) displays a miniaturized version
of the main table, where each horizontal bar corresponds to the rank
score of a data point in the main table. The colors mirror that of the
main table: green indicates a row that moved up, while red indicates a
row that moved down. On hover of a bar, a tooltip displays the ranking,
the name of the given data point, and the numerical value of the rank
score.

The minimap allows the user to see trends and anomalies of the
table as a whole at a glance. For instance, the user may be able to easily
spot a cluster of points in the middle that all moved up in the ranking or
a particularly dark red data point that fell far down in the ranking. They
may notice a sharp drop in the widths of the bars after the fifth ranked
item, indicating that the top five data points are significantly better
than the points below. The minimap bars may also have a small dark
gray square to the far left indicating that the corresponding data point
is marked in the main table to be used by Ranking SVM in computing
the weight vector. This helps the user to easily locate items of interest.

The interface has three buttons for model controls: Compute
Weights, Rank, and Discard (Figure 2c).

Compute Weights. The Compute Weights button triggers the system
to derive a new set of attribute weights based on the user’s interactions
with the data points in the table. The system models interactions with
data points in the main table in order to produce a new set of weights
according to the techniques described in Section 4.2.

Rank. The Rank button triggers the system to apply the set of at-
tribute weights to the data points in the table. The weights might have
been derived by Ranking SVM, or they might have been manually
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Fig. 4: The two tabbed views in the control panel.

specified by the user. In any case, the weights are used to compute a
score for each data point, which then determines the rank order of
the data in the table according to the techniques described in Sec-
tion 4.2.3. The main table and minimap views are then updated to
reflect the newly computed ranking.

Discard. The Discard button, labeled in the interface as X, allows
a user to return the system to the last saved state. State information
including attribute weights, ranking, and marked rows is saved each
time the Rank button is pressed.

4.2 Weight Solver

The weight solver, Ranking SVM [26], is triggered by the Compute
Weights button. The attribute weights may be positive or negative. A
positive weight (w; > 0) indicates that higher values of the attribute
w; are preferred in the ranking, while a negative weight (w; < 0) indi-
cates that lower values of the attribute are preferred in the ranking. A
weight of w; = 0 indicates that the given attribute w; does not impact
the ranking of the data points. In the following sections, we first de-
scribe how Ranking SVM is used to derive the attribute weight vector.
Next, we discuss how the constraints are derived from the user’s in-
teractions with the data to train the Ranking SVM model. Finally, we
describe how the weight vector is applied to produce a full ranking of
the data points. Table 1 summarizes the notations used in this section.
In the current version of the system, only numerical attributes are used
in the computation of the ranking. However, Ranking SVM can be
extended to support categorical attributes, which we describe further
in the Discussion section.

4.2.1 Ranking SVM

Podium uses Ranking SVM [26] to derive a set of attribute weights
based on the user’s ranking of the rows in the table. Ranking SVM ap-
plies the classic support vector machine (SVM) intuition to the ranking
problem. We have used the implementation of SVM provided by the
python library Scikit-Learn !. In a standard SVM, the algorithm is
provided with data points in some m dimensional space, and a corre-
sponding set of labels, marking to which class each point belongs. This
is often represented as a set of tuples, (dj,y;) for data point d; € R™
and label y; € {—1,1} for a two-class problem. The output model is
a hyperplane, defined by a vector in R”, that cuts through the space

"http://scikit-learn.org
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Notation Description

a={ay,...,am} set of m attributes describing D

W=[Wl,...,Wn] attribute weight vector; w € R
D={dy,...,dn} dataset of size n; dj € R™
r(dj) rank score of data point d;
k number of rows used to train the Ranking
SVM model
C(d;)) normalized contribution of attribute a; to the
rank score of data point d;
x normalized value of x

Table 1: Notation used to describe the ranking solver

of the data, optimized so that points with y; = —1 are on one side of
the hyperplane, points with y; = 1 are on the other, and there is a wide
margin of separation between points and the plane.

Ranking SVM applies the idea of optimizing for a hyperplane to
the ranking problem with pairwise constraints. Rather than a full set
of data points with corresponding labels, we get a limited set of pairs
of data points d; and d;, and a label telling us if d; is considered better
or not. The data Ranking SVM will see are difference vectors for pairs
of data points, e.g. dj — d;, and it will be asked to predict which point
is better based on their difference [26]. Specifically, we transform the
pair (d;, d;) and their relative rank to a tuple according to Equation 1.

1 if d; is preferred,
j is p ) )

d —d:
( bV 1 otherwise

The resulting model using Ranking SVM can be used to input a pair
of points and predict which is better. However, all of the constraints
derived from the user’s interactions might not be satisfiable. Since
producing no model might be frustrating to users, we have chosen to
model all constraints as soft constraints rather than hard constraints.
As such, the user’s interactions will always produce a set of attribute
weights that models the user’s constraints as closely as possible by
penalizing constraint violations. In the next section, we describe how
the user’s interactions are transformed into the input needed by the
Ranking SVM.

4.2.2 Deriving Constraints

In order to compute SVM’s linear separator, the ranking problem
must first be transformed into a two-class classification problem. To
do so, we generate labeled data for Ranking SVM using the points
with which the user has interacted by dragging to a new position or
clicking on. These are the k marked rows in the main display table.
These k points have indices [/,...,/], thus we consider data points
{dy,,...,d; }. Within this set, we create the set of all combinations
of pairwise difference vectors as training instances. That is, for ev-
ery i,j € {1...k}, where i # j, we derive a training tuple according
to Equation 1. Intuitively, each training instance is the difference be-
tween a pair of rows d; and dj;, classified as y = 1 if d; is ranked higher

than dj, or y = —1 if dj is ranked lower than dj. Thus, we now have
a two-class classification problem, to which Ranking SVM can be ap-
plied.

If the user presses the Compute Weights button in order to derive
a weight vector when fewer than k = 5 rows are marked, the system
automatically marks surrounding rows until £ > 5 have been marked.
For example, if the user has only interacted with 2 rows, the system
will add the rows above and below those that were interacted with to
provide additional training data for Ranking SVM. We chose k = 5 to
ensure a minimum amount of training data for deriving the attribute
weight vector. We make the assumption here that when the user places
a data point d; at rank position j, they make a value judgment about
the surrounding rows. That is, if d; is placed at rank j, then the data at
j— 1 is better than d; and d; is better than the data located at j+ 1. If
k > 5, no additional training data is added.

Beyond the rows that the user interacted with in the table, the user
may also emphasize or de-emphasize an attribute’s weight by toggling
its associated up (4> or down arrow (W) in the control panel. In re-
sponse, the system adds a new (x,y) tuple to the training instances
where x = [0,...,0,1,0,...,0] € R™ is the vector with O in all posi-
tions except for a 1 in the position representing the attribute the user
wishes to affect. If the user intends to emphasize the attribute (4"), we
use a training pair with values (—x,y = —1), and if the user intends to
de-emphasize the attribute (W), the training pair is (x,y = —1). The
choices of sign for this technique are derived from the Ranking SVM
update algorithm and empirically validated to ensure they can cause a
meaningful change to the weight vector.

4.2.3 Ranking

After transforming user inputs as described in Section 4.2.2 and learn-
ing a Ranking SVM model as described in Section 4.2.1, we have a
weight vector w representing the model for user preference as a signed
importance value for each data attribute. Additionally, the user may
adjust these weights as described in Section 4.1.1. This section de-
scribes how we rank the data points based on this attribute weighting.

The process of computing a ranking is modeled on the way Rank-
ing SVM’s model works. With that model, difference vectors of two
data points are passed to the Ranking SVM classifier (e.g., for points i
and j, (dj —d;)). In response, Ranking SVM uses its model to predict
which of the two input points should be ranked higher. Specifically,
it uses the dot product of the given difference vector with its internal
model, a weight vector w. If the dot product w - (d; — dj) is positive,
the difference vector belongs to the positive class y = 1, and thus d;
belongs relatively before d; in the ranking. If the dot product is nega-
tive, the difference vector belongs to the negative class y = —1, and dj
belongs relatively before d; in the ranking. Pairwise combinations of
vectors are passed into Ranking SVM in this way until a full ranking
of the data is produced.

The Ranking SVM model could be used in this way to derive a
ranking, by using its output on any pair of data points as a comparator
function in an O(nlogn) sorting routine. However, rather than feeding
difference vectors to Ranking SVM to obtain the relative rankings, we
gain flexibility by calculating a score for each individual point based
on the Ranking SVM model and ranking based on scores. Specifi-
cally, we calculate individual dot products of w with each data point
to produce a rank score as in Equation 2.

r(di):W'diZ iwj'd[j (2)
j=1

These dot products are then sorted, with the highest value correspond-
ing to the top rank. The result is ultimately the same as if we had
used Ranking SVM directly to define the data points’ classes since
W~(di—dj) :W~di—W-dj. If w-d; > W~dj, then w - (d; —dj) >0
so d; is ranked above dj, and vice versa. This alternative approach al-
lows us the flexibility to use the same ranking algorithm for the points
whether the weights come from Ranking SVM or the user has modi-
fied them directly via the interface.

4.3 Visualizing the Contribution

The contribution value for an attribute of a data point helps a user
to understand how much of that data point’s rank score, r(d;) (see
Equation 2), is due to the given attribute. The Contribution score,
C(d; ), represents the normalized contribution of attribute a; for the

rank score of data point d;. € (d;;) is computed based on the proportion
of the rank score that comes from d;; - w;, described in Equation 3.

N ‘di jW jl
C(dy) = — T 3)
Y7 maxi{|dygw |}
The result is C(d; ;) € [0,1] where higher values indicate that the at-
tribute contributes more to the data point’s rank score. When an at-
tribute weight has a high magnitude, the attribute values will have a
higher contribution to the data point’s rank score. When an attribute



weight has a low magnitude, the attribute values will have a lower
contribution to the data point’s rank score. The largest contribution is
when both the attribute weight and the data value have high magnitude.
While a visually and computationally simple feature, this allows users
to easily understand which attributes are important to the ranking of a
data point. Figure 3b shows the contribution values for a portion of the
table with a dataset of college football teams. Wisconsin (row 8), for
instance, has fairly high offensive statistics; however, since offensive
statistics are not weighted very highly in the model, they contribute a
relatively small amount to the rank score (as seen by the position of
the vertical black bars).

5 USAGE SCENARIOS

In this section, we present two usage scenarios, each illustrating one
way that our interactive, automatic ranking system can be used. In the
first case study (Section 5.1), a sports fan, Grace, uses a dataset about
college football to discover the most important features of her favorite
teams. In our second scenario (Section 5.2), using the same dataset,
another football fan, Ada, uses Podium to discover variables that will
help her predict the success of teams in upcoming seasons.

5.1

Grace is a college football fan from Georgia. She wants to use Podium
to understand which statistics make her favorite teams successful. She
uses a college football dataset from 2014 2 that contains entries for 128
different schools and contains 12 numerical attributes representing de-
fensive and offensive statistics, including points, passing percentage,
rushing average, yards per play, first downs, and turnovers. She begins
by positioning a few of her favorite teams in the table. She drags Geor-
gia and Florida State up near the top of the table. Auburn is a good
team as well, but not quite as good as Georgia and Florida State, so
she positions Auburn a bit lower. She does not think Georgia Tech and
New Mexico State are very good teams, so she drags them below the
other teams. She presses Compute Weights to compute an attribute
weight vector based on her constraints for the teams. Figure Sa de-
picts this stage of Grace’s exploration, annotated to show the rows she
interacted with and the resulting attribute weights.

Next, she applies the weight vector to the table by pressing Rank.
The results are shown in Figure 5b. The relative order of the teams
is maintained in the ranking, with Georgia at #5, Florida State at #50,
Auburn at #56, Georgia Tech at #96, and New Mexico State at #125.

Grace notices that Alabama has been positioned at #4 based on the
weight vector defined by Ranking SVM. Alabama is a great team, bet-
ter than Georgia, she thinks. She clicks on the row to refine the model
and reinforce Alabama’s correct positioning to the ranking model.
In the control panel, she notices most of the offensive statistics are
weighted positively except for rushing average. Lots of rushing yards
per play should be beneficial for a team, so she toggles the arrow up
(M) to emphasize the attribute in the model. Figure 5c depicts this
phase of Grace’s exploration.

Grace presses Compute Weights to regenerate the model using the
new constraints and presses Rank to apply the resulting weight model
to the full dataset. The final model increased offensive rushing average
from -1% to 7% as well as slightly shifted some of the other attributes’
weights. Since a negative attribute weight indicates that low values of
an attribute are more valued, Grace recognizes that the shift to a posi-
tive weight for offensive rushing average is a good thing since higher
values of rushing yards are preferred for good teams. Ultimately, the
model resulted in Alabama at #4, Georgia at #5, Florida State at #49,
Auburn at #58, Georgia Tech at #89, and New Mexico State at #125.
Grace toggles the Show Contribution option in the control panel. She
sees that while Alabama and Georgia are both very strong for offensive
statistics, defense contributes far more to the success of her favorite
teams (Figure 5d).

From her exploration, Grace realized that her favorite teams were
successful due to particularly strong defenses that allowed very few
points, complete passes, and rushing yards. Offense was generally less
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scenario described in Section 5.1. Red annotations show relevant areas
of the display.
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important to the success of Grace’s favorite teams, with the exception
of passing percentage at 14%.

5.2 Deconstructing Existing Rankings

Ada is interested in using Podium to understand what made teams suc-
cessful in the final 2014 standings. She wants to understand what the
winning teams did well or poorly so she can make better predictions
about successful teams in the future. She compares the teams from the
same 2014 college football dataset as her friend Grace, ranking them
according to their final standings from the end of the season.

Ada begins by focusing on the subset of teams in the Atlantic
Coast Conference (ACC). Their ranking at the end of the 2014 sea-
son was, starting with the best, Florida State, Clemson, Georgia Tech,
Louisville, Duke, Boston College, North Carolina, Pittsburgh, North
Carolina State, Virginia Tech, Miami, Virginia, Syracuse, and Wake
Forest. She drags the teams into their rank positions in the table and
presses Compute Weights (Figure 6a). Podium responds by showing a
set of weights of the team attributes that can explain that ranking. She
finds that ACC teams that are successful rely mostly on offense, and
in particular, they rely heavily on offensive points and first downs (in
contrast to some other conferences where teams with strong defense
perform well).

Interested in seeing how the model may differ for each conference,
Ada performs a similar task on a subset of the data for each confer-
ence. She exports the weights of the attributes to visualize her results
(Figure 6b). Weights range from -15% to +26%. They are color-coded
so that negative weights are red and positive weights are green. Per-
centages are binned in increments of 5%. She finds that many con-
ferences rely very heavily on offense as indicators of success, placing
more than 60% weight on offensive statistics (ACC, Big 10, USA,
and MAC). Success in other conferences relies more than 50% on de-
fensive statistics (AAC, Big 12, and SEC). She finds that ACC relies
far more heavily on offensive points as indicators of success than any
other conference, making up 26% of the model with a single statis-
tic. She also finds a few outliers: AAC has negative weight for offen-
sive rushing average; SEC has negative weight for offensive passing
percentage; and Sun Belt has negative weight for defensive turnovers.
Similarly, several conferences have positive weight for defensive pass-
ing percentage, defensive rushing average, and defensive first downs.
Based on what she’s learned, Ada can use the weight model from each
conference in 2014 along with other seasons to understand trends and
better predict team performance in the coming seasons.

6 PRELIMINARY USER FEEDBACK

We conducted a session to gather preliminary user feedback from 4
participants (P1-P4) who are experts in information visualization. The
goal of the session was to obtain preliminary feedback on the attribute
weight model as well as the general usability of the prototype system.
Participants were first given a short tutorial of how the system works,
during which they were encouraged to ask questions as needed. Next,
they were given time to click around in the interface in order to fa-
miliarize themselves with the interactions and controls. Participants
were then asked to perform a ranking task using a dataset of movies 3
and reflect on the model results and interface presentation. Users were
asked to think aloud throughout the session. Below we summarize the
participants’ perspectives on some of the strengths and weaknesses of
our approach.

All participants believed the holistic approach to ranking was very
useful and prompted reflection of their own preferences and biases. P3
noted that the system was fun to use, allowing him to see how certain
conceptual categories of movies he used for ranking resulted in very
different attribute weight vectors. P3 also noted that the ability to de-
rive attribute weights as well as manually tweak them was appreciated.
P2 and P4 observed that Podium acted as an interactive recommender
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(a) Step 1: A view of Ada’s interactions in ranking the teams of the ACC and the
resulting attribute weight vector in the red callout box.
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(b) Step 2: Ada exports the attribute weights to create a heat map for each con-
ference’s final 2014 rankings. The weights range from -15% to +26%. Negative
attribute weights are red, while positive attribute weights are green. The opacity
of each cell encodes the magnitude of the weight.

Fig. 6: A series of screenshots of the system from the usage scenario
described in Section 5.2.

for movies in this task. By providing exemplary rankings, the gen-
eralization of their rankings to the full dataset brought movies to the
top that they would like to see. P4 commented that this approach to
ranking allowed her to not be overwhelmed by specific attribute val-
ues of movies. All participants thought that the interaction technique
of clicking and dragging rows in the table was easy to understand and
found the Relative Rank column helpful for seeing how the model
treated their constraints.

Participants tended to believe the model better reflected their sub-
jective preferences as they interacted more with the system; however,
they had different interpretations of the derived model when it dis-
agreed with their mental model. For example, P1 doubted the accuracy
of the underlying model, whereas P3 and P4 rationalized the model by
referring to the data to make sense of the attribute weights. When the
model resulted in a particular movie continually being brought back
up to the top of the ranking, P2 stated it was like “having an argu-
ment with the model.” Despite this, P1 and P2 appreciated that the
derived weight vector allowed them to see a quantitative representa-
tion of attributes that they valued. P4 reflected that the model-derived
attribute weight vector made it clear she had a subconscious prefer-
ence for newer movies. Additionally, participants took different ap-
proaches to handling movies that they were not familiar with. P2 ig-
nored movies he had not previously seen, while P1 and P3 explicitly
positioned movies lower in the ranking that they had not seen before.
P1, P2, and P3 expressed some frustration about the movies they did
not know about getting in the way of the movies they did want to rank.
P4 commented that it would have been nice to support tied rankings
(e.g., in the case where she did not really know which of two movies
was better). Given this preliminary feedback from users, we discuss
the implications in greater detail in the next section.

7 DISCUSSION AND LIMITATIONS
7.1 Interface

Relative Comparisons. The interface of Podium provides an intuitive
way for users to interact with the data. However, it requires users to
place data points at precise rankings in the table. In the same way that


https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset

users may have a difficult time quantifying how important an attribute
is with direct attribute-manipulation ranking systems, they may have
a hard time deciding where to place a data point. Consequently, the
technique we chose to use to model the attribute weight vector (Rank-
ing SVM) only models the relative positions of data points. Based on
preliminary user feedback, one interface alternative might be to rank
the training rows in a separate staging area that did not contain the full
dataset. Alternatively, temporarily collapsing rows that the user has no
opinion about or otherwise removing the gap between rows that train
the model might be beneficial. Thus, future work might include un-
derstanding which interface alternatives are most intuitive in helping
users to make relative comparisons of data.

Explainability. Our techniques allow a user to see how their holis-
tic preferences for data points translate to preferences at the attribute
level. Podium facilitates the comparison of users’ expectations with
reality and can thus help users identify inconsistencies or biases in
their perception of data. Based on preliminary user feedback, it is ap-
parent that building trust in the model is important in order to encour-
age users’ reflection in such cases. P4 noted that the system illumi-
nated a subconscious preference she had for newer releases; however,
P1 questioned whether the model was working properly. Thus, for fu-
ture work we would like to better foster this process of self-reflection
by incorporating an approach to help users better understand how to
interpret the ranking results. That is, when a data point that the user
moved ends up in an unexpected position, how can the system explain
the model to the user? Further, could we provide some measure for
how biased a user is based on how their perceptions may or may not
be grounded in the data?

7.2 Ranking Solver

Inferring Constraints. In order to train SVM, we rely on deriving con-
straints based on the user’s interactions with the rows in the table. It
remains an open question to understand to what extent the user consid-
ers the implicit ordering of data when re-positioning a row in the table.
For example, if the user places a data point at row j, perhaps the user
implicitly decided that the data at row j was better than the data at row
j—+1. The user may also have decided that the data at row j was not as
good as the data at row j — 1. They may have considered both, or they
may have considered neither. Thus, we defer to future work the task
of understanding which implicit decisions are made based on a user’s
interactions. We currently employ a conservative approach whereby
constraints are derived only using the rows that the user explicitly in-
teracted with.

SVM Alternatives. Ranking SVM is an effective model for pairwise
learning to rank [32]. We chose an approach that is sensitive only to
the relative order of data points for the same reason that users may find
traditional ranking systems difficult: in the same way that users may
find it difficult to quantify the importance of attributes, they may find
it difficult to accurately position data points at an absolute position.
However, other pairwise learning to rank approaches exist including
RankNet [7], RankBoost [19], and IR-SVM [8], each with different
strengths and weaknesses. Further, other types of user input might
be more appropriate in other contexts. For example, if users want to
rank order a full dataset, listwise models might be more appropriate.
Similarly, if users have a strong notion of absolute position of data
points or are deconstructing an existing ranking as in Section 5.2, it
may be more effective to use pointwise models like regression. As fu-
ture work, we plan to further scrutinize the appropriateness of different
models for determining the attribute weight vector in various contexts.

Model Quality. Given our current choice of Ranking SVM, it is also
important to understand the quality of the resulting model. Based on
preliminary observations, it is often the case that users interact with
Podium for short periods of time resulting in relatively small amounts
of data available for training SVM. Consequently, the model can suf-
fer from underfitting compared to a user’s “ground truth” of what the
ranking of the data should be. This can be improved with more inter-
action; that is, the user can provide additional constraints in the form
of marking or re-ordering more rows in the table to improve the fit of
the resulting model. Another improvement to the model fit might re-

sult from future work to understand how additional constraints might
be derived from a single interaction from the user. If a user drags a
data point to a new position in the table, do they make a value judg-
ment about the data points above and below the new position? What
about two spots above or below the new position? By understand-
ing which surrounding data the user considers when positioning a data
point in the ranking, we can potentially derive additional constraints
and further improve the fit of the model.

7.3 Limitations

Carterette et al. discuss the ability of humans to skillfully make com-
parisons between two items [11]. We have used this previous work as
motivation for our choice of an underlying model that relies on relative
positions of data points. However, it is unclear to what extent the idea
holds when extended from document sets to potentially large multi-
attribute datasets. Potential future work could include an exploration
of humans’ cognitive abilities to make such judgments in the context
of multi-attribute ranking systems.

One additional limitation of the current implementation of Podium
is its reliance on purely numerical data. Categorical attributes are not
presently supported. However, Ranking SVM can be extended to han-
dle categorical data by creating separate binary attributes for each cat-
egorical value. For example, if the color attribute has three potential
values (red, blue, and yellow), each color value can be transformed
into a binary attribute. Any data point that had the value red for the
color attribute would have a 1 for the red attribute and O for the blue
and yellow attributes in the transformed space.

8 CONCLUSION

Ranking data points is a commonly-performed task for many data-
driven decisions. Previous ranking systems require users to manually
specify attribute weights of their dataset to produce system-generated
rankings. As dataset sizes and complexities increase, this can become
a cognitively difficult task. Often, people have a better understanding
of data points as a whole than they do of the attributes that define
them. In this paper, we thus introduced a technique to create a ranking
of multi-attribute data where users are able to rank a subset of data
points, from which the system computes a descriptive set of attribute
weights and produces a new ranking of the data. The technique uses
Ranking SVM trained on the data points that the user has interacted
with in order to determine the weight of each attribute. To demonstrate
this technique, we described two usage scenarios with the prototype
system, Podium, and presented preliminary user feedback.
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