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DRIL: Descriptive Rules by Interactive Learning
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Figure 1: DRIL has four main parts: (A) the control panel, (B) the visualization panel, (C) the visualized rule list, and (D)
the data table. The control panel handles data uploading and visualization options. The visualization panel is where the user
selects data of interest for automatic characterization. The rule list includes features for adjusting thresholds and examining the
relationships between the rules and the data. The data table is the detail view of raw data for reference.

ABSTRACT

Analyzing data is increasingly a part of jobs across industry, science
and government, but data stakeholders are not necessarily experts in
analytics. The human-in-the-loop (HIL) approach includes semantic
interaction tools, which leverage machine learning behind the scenes
to assist users with their tasks without engaging them directly with
algorithms. One widely applicable model for how humans under-
stand data is descriptive rules, which can characterize important
attributes and simultaneously their crucial values or ranges. In this
paper, we introduce an approach to help with data understanding
via interactively and automatically generated rules.Our approach
makes discerning the behavior of groups of interesting data efficient
and simple by bridging the gap between machine learning methods
for rule learning and the user experience of sensemaking through
visual exploration. We have evaluated our approach with machine
learning experiments to confirm an existing rule learning algorithm
performs well in this interactive context even with a small amount
of user input, and created a prototype system, DRIL, to demonstrate
its capability through a case study.
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1 INTRODUCTION

Data analysis plays an increasingly important and broad role in
industry, academia and government. People apply analytics and
machine learning to understand patterns in their data to great effect.
However, usually, the data stakeholders are not machine learning
experts. This disconnect between skill sets is a key problem in
unlocking the potential of data mining in broader industry. Training

stakeholders in machine learning or machine learning experts in
the domain is expensive and time-consuming. One solution, the
human-in-the-loop (HIL) analytics approach, is to make the machine
learning tools work for the domain experts behind the scenes, so the
experts can make the best possible use of their knowledge and data.

One way that people aim to make sense of data is to look for the
patterns “behind the data”, i.e. connections between variables or
groups of entities that are not obvious. Discovering natural group-
ings is a general functionality for understanding patients, customers,
products, experimental outcomes, and more. Humans can describe
insight about these groups by characterizing what separates those
data from the rest. Using rules to specify these characteristics,
e.g. “this high performing group of stores has low overhead and
situates in a rural area”, can be “models for human problem solv-
ing” [39]. Discovering these rules by hand can be impractical. In
this work we provide a technique that leverages machine learning
for automatic rule generation into an interactive mechanism for the
user to intuitively control the process. In a feedback loop, the data
stakeholder uses visualizations to spot potentially interesting groups
of points. Without needing to explicitly direct any algorithms, they
can get a fast characterization of these data. Through an interac-
tive visualization of these descriptive rules, they can explore the
relationship to the overall data and refine, rapidly developing their
understanding of the data.

Our technique is explained in section 3, and our prototype im-
plementation in section 4. The evaluation includes (1) machine
learning experiments with simulated users to demonstrate how the
underlying algorithms can be effective in our interactive context
(section 5) and (2) case studies that demonstrate how this technique
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can help to quickly reveal interesting patterns in data (section 6).
In our Discussion (section 7), we explain the experiments used to
choose a rule learning algorithm.

2 RELATED WORK

This paper builds on work in interactive machine learning or human-
in-the-loop (HIL) analytics for its core ideas of serving non-expert
users in analytics tasks with behind-the-scenes algorithms. We also
discuss maching learning algorithms for learning rules automatically.

2.1 Sensemaking with Interactive Machine Learning
Due to the broad desire to apply data mining in industry, there

are many tools intended to make it easy to run machine learning
algorithms. Commercial and free software includes applications with
drag and drop interfaces for running algorithms or even designing
big data pipelines [6, 14, 19, 22, 26].

In the visual analytics space, there has been work on assisting
users of machine learning algorithms to tune parameters, especially
semi-automatically, e.g. seeing live effects of changing dimension
weights while running PCA [24], building regression models while
incorporating domain expertise in feature selection [32], and choos-
ing regression model parameters interactively based on their perfor-
mance characteristics [13]. Due to its use of rules, RuleMatrix [31] is
particularly relevant. It uses rules to help users understand behavior
of other predictive models.

All of these tools still require the user to engage in some form
with the machine learning. With a human-in-the-loop approach built
around semantic interaction, however, we can broaden the audience
further. The user performs implicit model steering and interacts with
domain-appropriate visual tools while the machine learning is used
behind the scenes to improve the workflow [16, 17]. A number of
frameworks and surveys have covered HIL systems and the closely
related concepts of interactive machine learning and human-centered
machine learning [8, 18, 25, 34, 35]. The surveys provide many
examples of techniques in this space, with applications like grouping
people [3], learning distance measures [9], ranking [37], network
alarm triage [4] and mental workload [1]. The technique we describe
in this work has a similar structure, but contributes a new modality
of semantic interaction where groups of points of interest can be
quickly characterized to aid in rapid sensemaking.

2.2 Rule Learning
From the machine learning side, there are a wide variety of ap-
proaches for rule-based classification, in which IF-THEN rules
define the prediction of a class. We first differentiate from asso-
ciation rule mining, which analyzes itemsets (sets of objects) for
small common subsets. Rule-based classifiers are a better fit for our
application and can be divided into direct, which learn rules directly
from data (e.g. OneR [20], AQ [21], CN2 [11] and RIPPER [12]),
and indirect, which learn rules from another model, like decision
trees [33] or association rules [2] [36].

Another distinction in the types of rule learners is the difference
between learning standalone rules and rule lists, wherein evalua-
tion flows through the list until a classification decision is reached.
We considered multiple algorithms and chose two to evaluate in
detail with experiments for our interactive rule learning context, as
discussed in section 7.

3 INTERACTIVE RULE LEARNING FOR SENSEMAKING

As described in , we aim to facilitate sensemaking for data stakehold-
ers without analytics expertise. Descriptive rules are a “model for
human problem solving” [39] since they are a convenient way to un-
derstand and describe patterns with simple statements broken down
by relevant variables. Creating such rules by hand, scouring through
variables for similarities across a group of points, is impractical. We
use machine learning behind the scenes to help efficiently discover
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Figure 2: Diagram of our Human-in-the-Loop approach to sense-
making via rule learning. The domain expert interacts with a visual
system in a sensemaking loop where they select points to see au-
tomatically generated rules that differentiate those points from the
rest of the data. The rules are shown with interaction mechanisms
to further explore their relationships with the data and iterate the
process. See Section 3 for details.

descriptive rules. The user implicitly steers model development
without needing to engage directly with machine learning.

In this section we explain how we adopt an existing learning
algorithm for this purpose, including how we derive its inputs from
user interaction and how we show its outputs back to the user. The
diagram of Figure 2 shows the feedback loop of this HIL system,
where the interactive visualizations help the user refine understand-
ing, adjust data selection and refine the rules. This section explains
our technique, but not the specifics of the prototype built to evaluate
it, which are in Section 4.

3.1 Generating Rules for the User
Since this HIL process is guided by the user, the first step is that
the user takes advantage of visualizations to explore data and de-
velop questions or hypotheses to investigate. This could simply be
in the form of noticing data points that do not conform to expecta-
tions. With some understanding of the data domain, the user may be
acutely aware of what data points are expected to group together or
appear atypical. There are many ways this manifests visually, but
for example, there could be a group of points sitting together on the
periphery of an apparent cluster in a data projection. However the
points are noticed, the user’s question becomes, “What is going on
with this group?” An answer might specify not only which variables
are relevant to explaining those data, but what value ranges are in-
cluded versus excluded. A rule learner can be used to specifically
answer this question, with conditions describing group members
like “pro f it ratio > .76 AND inventory value > 2,110,000”.

Our implicit model steering, HIL approach makes it easy to use
this capability. Given simply a selection of points from the user,
we begin the HIL loop shown in Figure 2 by transforming the user
input to a machine learning input. Rule learning algorithms are
generally supervised machine learning classifiers, meaning they take
a dataset, xi ∈ X , and a corresponding class label, yi ∈C, for each
xi, and learn a model that predicts which class an unseen data point
x belongs to. In this case, we construct the class label from the
user selection: for each data point xi, we assign class yi = 1 if xi
has been selected, otherwise yi = 0. Because this label specifically

2



Online Submission ID: 0

differentiates group membership, the model that will be learned by
any supervised approach will be tuned to identifying how to separate
the selected points from the rest.

When using a classifier to make predictions, it is important to
balance the number of data items with each label. In this case, we
expect imbalance because we do not want to require the user to label
many points. However, because the models will be used only to
guide sensemaking, not to make predictions, this should not be a
concern. This tool can help early in the sensemaking process to
generate insights and understanding, leading to further validation.
We show in experiments (section 5) and a case study (section 6), that
a small selection by the user can lead to interesting investigations.

3.2 Visualizing and Interacting with Rules
The rules that come straight from the machine learning are not ideal
for presenting to a non-expert user. In order to facilitate closing
the HIL loop of Figure 2, we must visualize the rules and provide
interactions to help the user deepen understanding.

In the anatomy of the response from a rule learner, the top level
is a list of rules, each of which corresponds to predicting that a
point belongs with the user’s selection, or that it does not. Each
rule contains one or more conditions, which are the specific attribute
ranges that contribute to the characterization. For example, as shown
in Figure 3, IF drat > 3.15 THEN class = 0 is a rule, while drat >
3.15 is its only condition and the range is (3.15, in f ). This rule’s
class is 0, so points that satisfy the rule (all its conditions) are
predicted not to be in the selected group. This corresponds to the
rule model describing the group by excluding points that satisfy
these conditions. Rules can have multiple conditions connected by
the AND operator. The OR operator is not used, but is unnecessary,
as there would instead be multiple rules, each with its own class
output.

Another complication of the generated rules is apparent “inverse-
duplicate” conditions, where a condition and its opposite are both
provided. For example, IF x< 5 THEN in group might be accompa-
nied by IF x >= 5 THEN out group. This redundancy is removed
unless one of the conditions is in a rule with other conditions, as in
Figure 3. In this case keeping both makes it possible (via mouseover)
to see the effect of the variable in isolation as well as with its fellow
conditions. When the rules are independent, e.g. with Quinlan [33],
removing one does not affect the others. Even when the order does
not matter, sorting them sensibly is important for user efficiency, so
we prioritize positive rules (selected point) and those that cover a
higher proportion of the data. Additionally, if a user makes a selec-
tion based on a scatterplot, two trivial rules may result: specifying
the range in the x and y axes. These rules are uninformative, but
rather than remove them post-hoc, the attributes corresponding to
the visualization can be excluded from the model learning.

Finally, no machine learning will get perfect prediction always.
HIL systems employ a feedback loop for iterative improvement
(see Figure 2). Interactive visualizations to permit exploring the
relationships between the rules and data are key. For example, one
might examine the effect of rule thresholds by comparing them to
the variable distributions. The user can then adjust the selection and
get updated rules to show refined relationships.

4 THE DRIL PROTOTYPE

The technique introduced in this work is explained in Section 3.
In this section, we explain our prototype system used to validate
the technique. The details include the specific visualizations and
interactions provided, plus implementation details.

DRIL has four main components seen in Figure 1: (A) control
panel, (b) data visualization panel, (C) visualized rule list, and (D)
data table. Together, these provide an interface for loading and
visualizing data, selecting points to provide input to the rule learner,
and visualizing rules and their relationships to data.

Learned Rule List

IF drat > 3.15

THEN class=0

IF cyl>6 

AND drat<=3.15

AND wt <=4.07

THEN class=1

Default class: 0

Visualized Rule List

Figure 3: Output of a rule learner’s output next to how it is visual-
ized.

The control panel and visualization panel together are a straight-
forward interface for loading data, and visualizing it. The options
include a projection of the data calculated with Multidimensional
scaling (MDS) [7]1. MDS is chosen over newer techniques like
t-SNE [27] because t-SNE is meant to emphasize local structure
and can create misleading spatializations sensitive to its multiple
parameters [38]. A lasso selection is used for point selection. Once
the analyst has chosen points of interest they click on the control
panel to learn rules. DRIL will respond by learning a model to
characterize the selected group. The mechanism for providing rules
is described in Section 3.1, and we use Quinlan’s method [33] as the
rule learning in DRIL.

Certain transforms are needed to prepare the rules for visualiza-
tion (see subsection 3.2). Each independent rule is bounded by a box
with purple or gray trim to indicate a positive (point was selected) or
negative rule, respectively. The mouse hover for these boxes high-
lights the corresponding data in the visualization panel, including
marking incorrect in-group labels with a black stripe. Each rule box
and condition within it is marked with two horizontal stacked bars to
show the proportion of in-selection and non-selected data covered by
the rule. Histograms or bar charts show how each condition’s value
boundaries relate to the distributions of the variables. The corre-
sponding sliders and checkboxes allow the user to make adjustments.
The effects of the adjustments can be seen when hovering.

5 EMPIRICAL MACHINE LEARNING EVALUATION

We need to ensure that our learning method is capable of producing
valuable rules for users with their limited interactions. This is not an
evaluation of the machine learning algorithms themselves, which are
established, but rather of how in our interactive environment they
could support the task. In this section we explain how success is
measured, and how we simulate different user interactions to collect
performance data.

5.1 Metrics of Success

In a typical 2-class problem in machine learning, the framing of
performance is through the tradeoff of precision vs. recall. These
metrics model correctness at predicting a positive case and what
proportion of actual positives were identified, respectively. In the
case of our evaluation, we want to emphasize the ability to capture
the set of points selected by the user (positives), so recall will be
most helpful. However, over-prediction as positive will not be useful,
so we also evaluate recall with the labels flipped, i.e. an “inverse

1Metric MDS computed with the python scikit-learn library [10] with
min-max scaled data and Euclidean distance. Dummy variables are used for
categoricals. Other parameters were defaults.
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Figure 4: Case Study - Frankie quickly discovers some commonalities among employee absences. See section 6
.

recall” that measures the ability to predict all non-selected points
correctly2.

5.2 Simulation of Effectiveness for User
We assume that users need only select a small amount of data as
input for the rule learning, and that they discover these as groups
through visualization. Thus, two goals of the empirical machine
learning evaluation are to evaluate how many selected points are
sufficient, and to simulate user selection based on visual properties.

We conducted four types of simulations and measured the results
with recall and inverse recall.The four methods are (1) random se-
lection: user selects random points to select (a baseline), (2) random
closest selection: user selects one point at random, then chooses the
closest k points, (3) random closest selection in a cluster: user selects
one point at random, and closest points within the same cluster3 are
chosen, and (4) overall closest selection: user chooses closest set
of points in the entire dataset. Distances are Euclidean in the MDS
space, to match what a person would see. For each simulation, we
tested a selection size of 10, 20, 30, 40, and 50 points. Because
of the random point selection, each experiment (corresponding to
a tuple of simulation technique and number of points) was run 20
times and the results were averaged. We tested with six datasets
common in machine learning literature (AbsenteeismAtWork [29],
BreastCancer [28], Banknote [15], Heart [23], Ionosphere [5], and
Sonar [5]), which have varying numbers of points and attributes.

The simulation results are shown in the supplementary materi-
als, broken down by recall vs. inverse recall, then by simulation
technique, with number of selection points in the x axis and a line
representing each dataset. First, for random closest positive points
and random closest positive points in a cluster, we see the expected
pattern that increasing the number of points improves performance.
We also note that performance is good at 10 labels (better than 80
percent) and consistently near-perfect after 20. For inverse recall,
the denominator is much higher and the performance is near perfect
for all levels of selected points. However, for random selection and
closest positive points, the rule learning sometimes fails and the
performance is less consistent. This is because randomly choosing
points, which is included only as a baseline, can result in a selection
that does not have enough signal to model. Similarly, the absolute
closest set of points will perform poorly as the arbitrary number of
points grows beyond the size of the tightest group.

6 CASE STUDY

Frankie is a manager in a company and has collected data on ab-
senteeism [30] and is looking for patterns that cause employees
to miss work to inform project estimates. To begin, she wants a
generic overview and selects an MDS projection so she does not
have to pick individual variables (Figure 4). She chooses to map
color to the amount of absentee time in hours, looking for the biggest
cases. There are multiple apparent groups, which may correspond

2This “inverse recall” can also be called specificity, but that name does
not describe its purpose straightforwardly.

3Hierarchical agglomerative clustering avoids the issue of choosing the
number of clusters because we can choose it to get enough points.

to types of absence behavior. Though the darkest-blue cases are
spread around, she notices several in one of the groups and wants to
investigate what explains these absences. DRIL makes this type of
sensemaking trivial: she simply selects that set of points and clicks
a button.

In response, a set of rules describing those selected data points
appears to the right. DRIL has identified an interesting pattern:
these absences are all during the Fall and Winter AND all people
who identify as social drinkers. She wants to explore further, so
she mouses over the negative rule that says non-social-drinker. The
corresponding highlight shows that social drinker may itself be a
helpful variable, as it separates the top half of the projection from
the bottom. Additionally, it is clear that none of the people in
the selected group are non-social-drinkers. This absenteeism may
be due to people getting sick from social gatherings during flu
season. Certainly, Frankie must do a confirmatory analysis before
responsibly reporting such a hypothesis, but the aim of our technique
is to facilitate the early sensemaking process where the user grows
understanding of the data and develops hypotheses. Thanks to DRIL,
Frankie has quickly been able to glean insight about what variables
and specifically what ranges of those variables may be key factors
in absenteeism. In DRIL, she can continue to explore other groups
or visualize the data with these variables to see if there may be
additional structure to explore.

7 DISCUSSION - CHOICE OF RULE LEARNING ALGORITHM

There are numerous options for using machine learning to discover
rules, as outlined in section 2. We considered multiple approaches
but planned to give the user a choice between an algorithm producing
independent rules based on decision trees (Quinlan [33]) and one that
produces decision lists based on direct optimization, (SBRL [40]).

There are important differences between these algorithms, includ-
ing their ability to handle categorical data, their speed performance,
and their sensitivity to poor or limited labels. We evaluated these
techniques in our interactive context just as in section 5. Results
from these experiments are provided in the supplementary materials.
Quinlan performed so much better and more reliably for this task, es-
pecially considering the label imbalance common in this application,
that we have not used SBRL in DRIL.

8 CONCLUSION

In conclusion, this paper has presented our approach to helping a
data stakeholder without machine learning background efficiently
grow understanding through automatic rule generation.The learn-
ing mechanism is behind the scenes and draws on existing ML
algorithms. We evaluated our choice of algorithm as well as its
performance in this interactive context with simulations. A proof-of-
concept prototype, DRIL, shows how this technology can work with
a practical implementation that allows us to show a case study of its
effectiveness. Using rapid, interactive, automatic generation of rules
in a human-in-the-loop system could be a broadly useful technique
that can be incorporated into many applications.
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