
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. 23, NO. 1, JANUARY 2017 331

Manuscript received 31 Mar. 2016; accepted 1 Aug. 2016. Date of publication
15 Aug. 2016; date of current version 23 Oct. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2016.2598839

1077-2626 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Visualization by Demonstration: An Interaction Paradigm for Visual
Data Exploration

Bahador Saket, Hannah Kim, Eli T. Brown, Alex Endert

Red

Blue

Price

Cylinder

Price

Cylinder

Price

 Cylinder

Count

Horsepower

Not SUV

SUV

Legend

Large Car

Medium Car
Small Car

Visualization Interactions Demonstrations Provided Recommended Transformations
D

Position

Color

Size

Legend

CBA

Figure 1: An overview of the Visualization by Demonstration paradigm (illustrated using a car dataset). A) Interactive visualization
displayed. B) Users can manipulate spatial and graphical encodings directly (e.g., coloring data points). C) Users provide visual
demonstrations of incremental changes to a visualization. D) Using these demonstrations, the system estimates the intended results
and recommends possible transformations.

Abstract—Although data visualization tools continue to improve, during the data exploration process many of them require users to
manually specify visualization techniques, mappings, and parameters. In response, we present the Visualization by Demonstration
paradigm, a novel interaction method for visual data exploration. A system which adopts this paradigm allows users to provide
visual demonstrations of incremental changes to the visual representation. The system then recommends potential transformations
(Visual Representation, Data Mapping, Axes, and View Specification transformations) from the given demonstrations. The user and
the system continue to collaborate, incrementally producing more demonstrations and refining the transformations, until the most
effective possible visualization is created. As a proof of concept, we present VisExemplar, a mixed-initiative prototype that allows
users to explore their data by recommending appropriate transformations in response to the given demonstrations.

Index Terms—Visualization by Demonstration, Visualization Tools, Visual Data Exploration

1 INTRODUCTION

Visualization researchers and practitioners continue to develop a wide
range of interactive visualizations which allow users to explore and
make sense of their data. One widely-used interaction paradigm for
these visualizations is direct manipulation through control panels and
other graphical widgets [28]. This includes controls and selections
such as view specification, filtering, assigning data attributes to visual
encodings such as color or size, and others. Such methods require
users to specify their visualization techniques (e.g., selecting a scat-
terplot), mappings (e.g., assigning size to a data attribute), and pa-

• Bahador Saket, Hannah Kim, and Alex Endert are with Georgia Institute
of Technology. E-mail: {saket, hannahkim, endert@gatech.edu}.

• Eli T Brown is with DePaul University E-mail ebrown80@cdm.depaul.edu.

rameters (e.g., assigning data attributes to axes) in order to generate
and modify visualizations to explore their data. Alternatively, more
recent work in visualization recommender systems has given users the
ability to select data attributes of interest, from which visualizations
are generated [33, 4]. The recommendations are generated based on
the computed data characteristics and the user input about which data
attributes are of interest.

There also exist prior studies that show the effectiveness of letting
people create spatial representations of data points manually, without
the need to formalize the mappings between the data and the spatial
constructs created. For example, Andrew et al. [2] found that peo-
ple use the spatial environment to create layouts of information which
have meaning to the person, without requiring users to specify the for-
mal definition of the layout. For example, people create clusters of
similar data points by moving similar data points closer to each other.
Further, during such spatial exploration processes, some of the spa-
tial arrangements exhibit characteristics similar to formal visualiza-
tion techniques [15, 16]. For example, participants stacked data points
in the shape of bars to count the number of specific items (similar to

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

332 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

the well-known bar chart visualization technique). These studies show
that users are effective at providing visual demonstrations of visual-
ization techniques, mappings, and parameters.

The demonstration-based paradigm for human-computer collabora-
tion has seen use in a variety of contexts. In computer programming,
programming by demonstration [8] allows users to generate code by
providing demonstrations of some intended result, often done visu-
ally. The user and the system continue to collaborate, using further
user demonstrations to incrementally improve the computer-generated
code. Wrangler [18] is also an instance of “by demonstration” sys-
tems. Wrangler allows users to provide demonstrations of expected
results on tabular data by directly showing results in the table view
(e.g., selecting a substring of a column to generate the transforma-
tion for creating a new column). Other application domains that ex-
hibit the “by demonstration” approach include query by demonstra-
tion [35], data cleaning by demonstration [21], 3D drawing by demon-
stration [17], and more. In this work, we show that this interaction
paradigm can be extended to visual data exploration and information
visualization.

We present the Visualization by Demonstration paradigm. The
paradigm advocates for decreasing the level of formalism and fun-
damental knowledge required for visual data exploration. Instead of
specifying which visualization technique, mappings, and parameters
to generate and update a visualization, Visualization by Demonstration
allows users to provide visual demonstrations of incremental changes
to the visual representation from which transformations are recom-
mended. Using these demonstrations, the system estimates the inten-
tions and generates potential transformations (e.g., a bar chart, map-
ping color to a data attribute). This iterative process allows users to
visually explore their data without requiring direct visualization spec-
ification. That is, the goal is to balance the responsibility of data
exploration between the user and the system — users provide visual
demonstrations, while the system generates visualizations and defines
the visualization mappings and parameters (see Figure 1).

The contribution of Visualization by Demonstration over existing
work is twofold. First, the concept of Visualization by Demonstra-
tion does not require users to specify visualization techniques ahead
of time. Instead, the paradigm will extract the visualization technique
from the given demonstrations. Second, the paradigm also extracts
visualization mappings and parameters that match given demonstra-
tions. For example, if users stack data points vertically, Visualization
by Demonstration suggests a bar chart with appropriate axes.

To show the feasibility of the Visualization by Demonstration con-
cept, we implemented VisExemplar. VisExemplar is a mixed-initiative
data exploration prototype that allows users to explore their data us-
ing Visualization by Demonstration. VisExemplar allows users to pro-
vide visual demonstrations of incremental changes to the visualization
by directly manipulating the visual representation (e.g., moving one
data point on the top of another, changing the color of a select set of
point, etc.). VisExemplar uses a recommendation engine that gener-
ates transformations in response to the given demonstrations using a
set of intent functions. To help users understand the results of different
recommended transformations before they commit, VisExemplar con-
tributes novel methods for presenting recommended transformations.

The remainder of the paper is organized as follows. Section 2 first
discusses differences between interaction methods used in existing vi-
sualization tools and the Visualization by Demonstration paradigm.
It then describes some of the studies that inspired the Visualization
by Demonstration paradigm. In the light of previous work, Section
3 describes Visualization by Demonstration in more detail. Section 4
provides a usage scenario and the system design of VisExemplar. In
Section 5 we discuss the potential value of Visualization by Demon-
stration and possible research avenues for continued research.

2 RELATED WORK

2.1 Visual Data Exploration

Visual representations are one of the fundamental components of any
visualization tool [34]. A central component of visual representations

Figure 2: Constructing a visualization with tokens. Figure from [16]
used with permission.

is the mappings from data values to graphical representations [7]. Vi-
sual representations are constructed using a combination of different
visual encodings (e.g., length, position, size, color, etc.) [6]. Thus,
interactivity in visualization tools is often designed to change one or
more mappings between the data and the visual encodings. A popular
method for visualizing data is using pre-existing interactive visualiza-
tion tools (e.g., SpotFire [29] and Tableau [30]). Such visualization
systems allow users to specify direct mappings between their data and
the visual representation without requiring users to have programming
skills. However, such systems require some amount of fundamental
knowledge about the data, the domain, and of visualization techniques.
For instance, to create a scatterplot, users must specify the technique,
and then which of the data attributes to map onto the x and y axes.

There also exist mixed-initiative systems [14] which aim to balance
the responsibility of data visualization between the user and the sys-
tem. One category of such systems is visualization recommendation
tools. Many visualization recommendation systems have been devel-
oped to assist users to visualize their data (e.g., [4, 12, 22, 23, 33]).
They suggest alternative views (visual encodings, data attributes, and
data transformations) based on user-specified data of interest and com-
puted characteristics about the data. Voyager [33] is mixed-initiative
system that couples faceted browsing with visualization recommen-
dation to support visual data exploration based on user-specified data
attributes of interest. VizAssist [4] generates visualizations by requir-
ing users to specify both desired data attributes and tasks.

Instead of requiring users to specify the visualization technique,
mappings, and parameters a priori (or specify data attributes of in-
terest), Visualization by Demonstration extracts this information from
created visual demonstrations. Visualization by Demonstration can be
used independently or to augment existing visualization tools to in-
crease their functionality in concert with direct manipulation controls.

2.2 Flexibility of Spatial Data Organization
Andrews et al. [2] showed how space was used by their participants
as both an external memory aid in which the spatial constructs car-
ried meaning. The participants formed spatial constructs (e.g., groups,
lists, clusters) as a means to organize the information, as well as struc-
ture their analytic process. Various studies also used spatial environ-
ments as a thinking medium to allow users to construct their visual-
izations incrementally [27, 31, 32]. For example, Walny et al. [32]
showed how pen and touch can be used to construct visualizations
on interactive whiteboards. Similarly, SketchStory [20] demonstrates
how users can draw visualization characteristics (e.g., axes of a scat-
terplot) to generate visualizations. Moreover, Schroeder et al. [26]
introduced a sketching technique that enable graphic designers and
artists to construct multivariate time-varying visualizations by paint-
ing on a digital data canvas, sketching data glyphs, and blending to-
gether multiple layers of animated 2D graphics. Satyanarayan and
Heer [25] presented Lyra, a direct manipulation environment that al-
lows users to create customized visualizations by without requiring
coding (e.g., dragging and dropping data attributes directly onto vi-
sual glyphs). Similarly Ren et al. [24] presented iVisDesigner, an in-
teractive environment that allows users to design visualizations inter-
actively, without the need for coding.

Huron et al. [15] proposed a method called “Constructive Visual-
ization”, which advocates for allowing people to create visualizations
by manually moving, adding, and removing physical tokens. In their
study, each token represents a basic data unit. Thus, constructing a

visualization means assembling these tokens to encode the data in a
meaningful way (see Figure 2). They found people use the spatial
environment to construct visualizations and explore their data, where
many spatial arrangements exhibit characteristics similar to formal vi-
sualization techniques. For example, people stacked data points in the
shape of bars to count the number of specific items (similar to the well-
known bar chart visualization technique). Inspired by these studies,
the direct manipulation of spatial encodings of a visual representation
is one of the methods that people can use to provide demonstrations in
the Visualization by Demonstration paradigm.

Prior work also exists which allows users to directly adjust the
position of data points (e.g., documents), interpret this feedback via
a dimensionality reduction model to generate a new spatialization
that better reflect the users understanding of the high-dimensional
data [5, 9, 10]. DimpVis is one of the recent systems which applies em-
bedded interaction as a substitution to other options (e.g., time slider)
for querying and exploring time-varying information visualizations.
The system allows users to directly manipulate the data points in visu-
alizations to perform temporal navigation of the dataset [19].

Visualization by Demonstration advocates for a similar form of di-
rect visual and graphical manipulation of data points. People are given
the ability to reposition and re-encode visual demonstrations of data,
from which the mappings are computed.

3 VISUALIZATION BY DEMONSTRATION

The systems which make use of the Visualization by Demonstration
paradigm allow users to provide visual demonstrations of incremental
changes to the visualization as a method for user interaction. These
demonstrations could be provided by direct manipulation of the spa-
tial and graphical encodings used in a visualization. The systems then
recommend potential transformations from the given demonstration.
In this section we first discuss two different methods that the Visual-
ization by Demonstration paradigm supports for providing demonstra-
tions. We then discuss different classes of transformations supported
by this paradigm. Finally, we present design guidelines that should be
considered by systems adopting Visualization by Demonstration.

3.1 Methods for Providing Demonstrations
Building on the strong research foundation of previous work [2, 15, 16,
32], one of the methods by which the systems adopting Visualization
by Demonstration might allow users to provide visual demonstrations
is by directly adjusting the spatial layouts of data points (e.g., users
stacking data points in the shape of bars to convey their interest in a
bar chart or placing two data points in desired positions along the x
or y axis to demonstrate the attribute to map to the axis). In addi-
tion to direct manipulation of spatial encodings, the systems adopting
this paradigm might allow users to demonstrate desired graphical en-
codings applied to data attributes by adjusting the graphical encodings
used in a visualization (e.g., changing the color or size of data points
in a scatterplot, length or color of bar in a bar chart, and others).

3.2 Recommending Potential Transformations
Visualization by Demonstration suggests possible transformations that
can be applied based on the provided demonstrations. For each
demonstration, the system checks how the current state of the visu-
alization, parameters, and mappings should be transformed to create
meaningful visual representations that match the demonstration. The
system then recommends these possible transformations. We catego-
rize these transformations into four main categories, described below.

Visualization Representation Transformations change the cur-
rent visualization technique to a different visualization technique (e.g.,
transforming from a scatterplot to a bar chart). To convey interest in
transforming to a new visualization technique, users can manipulate
the spatial encoding to create a spatial layout similar to the intended
visualization technique. For example, users can stack two or more
data points vertically or horizontally in a scatterplot to demonstrate
their interest of switching to a vertical or horizontal bar chart.

Data Mapping Transformations define mappings between graph-
ical encodings and data attributes (e.g., mapping color to an attribute).

To convey interest in assigning a graphical encoding to a data attribute,
users can manipulate the corresponding graphical encoding in the vi-
sual representations. For example, users could color one or more data
points red to convey their interest in mapping color to a data attribute.

Axes Transformations assign data attributes to axes of a visual-
ization technique (e.g., assigning an attribute to the x axis of a scat-
terplot). To assign new data attributes to axes, users can manipulate
the corresponding graphical encoding or spatial encoding in the visual
representations. For example, in a scatterplot, users could move one
or more data points to a positions along an axis to demonstrate their
interest in having a scatterplot in which the manipulated data point is
close to the current coordinates, thus changing the attribute assigned to
the axis. Alternatively, in a bar chart, users could change the length of
one of more bars to demonstrate mapping a new attribute to the axis.

View Specification Transformations change the view specifica-
tions without changing the underlying technique (e.g., aggregation,
average, sorting). For example, users could convey their interest in
sorting a bar chart by dragging the longest bar in the current bar chart
to the most left or right side of the axis.

3.3 Design Guidelines
We identify the following design guidelines for applications that make
use of Visualization by Demonstration. These were refined through
our experiences through several design iterations.

G I: Support direct manipulation of visual representations to
foster visual data exploration. Inspired by previous studies [15, 32,
20], Visualization by Demonstration should provide an environment
in which users provide demonstrations by manipulating the spatial and
graphical encodings of data directly in the visual representations.

G II: Balance human and machine workload in the visual data
exploration process. Allowing users to construct demonstrations by
manipulating the spatial and graphical encodings increases the direct-
ness of their interactions. However, manually manipulating all the data
points in a visualization is time consuming. To balance human and
computer’s effort in this process, this paradigm advocates for a mixed-
initiative approach to human-computer collaboration during the visual
data exploration process – users provide visual demonstrations, and
the system provides recommended transformations.

G III: Enable user interactions to drive recommended transfor-
mations. Systems adopting this paradigm should allow users to spec-
ify their intentions or desired aspects of the data by directly manip-
ulating the data points in a visual representation. In aggregate, these
interactions create visual demonstrations which serve as the primary
units by which users communicate their intended changes to the sys-
tem.

G IV: Enhance interpretability of recommendations. Recom-
mended transformations should be presented in way that allow users
to extract why specific transformations were shown and what would be
the resulting outcome if they accept any of the transformations. This
requires recommended transformations to be presented in a right posi-
tion in the interface, and provide users with the rationale behind why
they were recommended.

4 VISEXEMPLAR

To demonstrate the application of Visualization by Demonstration, we
developed VisExemplar (see Figures 3 and 4). All components of
the VisExemplar are implemented using JavaScript and the visualiza-
tion modules are built using the D3 toolkit [3]. Datasets in comma-
separated values format are supported. The implemented system is
available at http://bitbucket.org/bahadorsaket9/vbd.

4.1 Usage Scenario
In this section, we motivate the design of our system and illustrate
the functionality via a usage scenario. We indicate how someone can
utilize VisExemplar to examine data about cars. The car dataset [13]
provides specifications on new cars and trucks for the year 2004. The
dataset contains 122 data points, with 18 data attributes describing
each car. This dataset is used throughout the motivating examples in
this paper.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

SAKET ET AL.: VISUALIZATION BY DEMONSTRATION: AN INTERACTION PARADIGM FOR VISUAL DATA EXPLORATION 333

the well-known bar chart visualization technique). These studies show
that users are effective at providing visual demonstrations of visual-
ization techniques, mappings, and parameters.

The demonstration-based paradigm for human-computer collabora-
tion has seen use in a variety of contexts. In computer programming,
programming by demonstration [8] allows users to generate code by
providing demonstrations of some intended result, often done visu-
ally. The user and the system continue to collaborate, using further
user demonstrations to incrementally improve the computer-generated
code. Wrangler [18] is also an instance of “by demonstration” sys-
tems. Wrangler allows users to provide demonstrations of expected
results on tabular data by directly showing results in the table view
(e.g., selecting a substring of a column to generate the transforma-
tion for creating a new column). Other application domains that ex-
hibit the “by demonstration” approach include query by demonstra-
tion [35], data cleaning by demonstration [21], 3D drawing by demon-
stration [17], and more. In this work, we show that this interaction
paradigm can be extended to visual data exploration and information
visualization.

We present the Visualization by Demonstration paradigm. The
paradigm advocates for decreasing the level of formalism and fun-
damental knowledge required for visual data exploration. Instead of
specifying which visualization technique, mappings, and parameters
to generate and update a visualization, Visualization by Demonstration
allows users to provide visual demonstrations of incremental changes
to the visual representation from which transformations are recom-
mended. Using these demonstrations, the system estimates the inten-
tions and generates potential transformations (e.g., a bar chart, map-
ping color to a data attribute). This iterative process allows users to
visually explore their data without requiring direct visualization spec-
ification. That is, the goal is to balance the responsibility of data
exploration between the user and the system — users provide visual
demonstrations, while the system generates visualizations and defines
the visualization mappings and parameters (see Figure 1).

The contribution of Visualization by Demonstration over existing
work is twofold. First, the concept of Visualization by Demonstra-
tion does not require users to specify visualization techniques ahead
of time. Instead, the paradigm will extract the visualization technique
from the given demonstrations. Second, the paradigm also extracts
visualization mappings and parameters that match given demonstra-
tions. For example, if users stack data points vertically, Visualization
by Demonstration suggests a bar chart with appropriate axes.

To show the feasibility of the Visualization by Demonstration con-
cept, we implemented VisExemplar. VisExemplar is a mixed-initiative
data exploration prototype that allows users to explore their data us-
ing Visualization by Demonstration. VisExemplar allows users to pro-
vide visual demonstrations of incremental changes to the visualization
by directly manipulating the visual representation (e.g., moving one
data point on the top of another, changing the color of a select set of
point, etc.). VisExemplar uses a recommendation engine that gener-
ates transformations in response to the given demonstrations using a
set of intent functions. To help users understand the results of different
recommended transformations before they commit, VisExemplar con-
tributes novel methods for presenting recommended transformations.

The remainder of the paper is organized as follows. Section 2 first
discusses differences between interaction methods used in existing vi-
sualization tools and the Visualization by Demonstration paradigm.
It then describes some of the studies that inspired the Visualization
by Demonstration paradigm. In the light of previous work, Section
3 describes Visualization by Demonstration in more detail. Section 4
provides a usage scenario and the system design of VisExemplar. In
Section 5 we discuss the potential value of Visualization by Demon-
stration and possible research avenues for continued research.

2 RELATED WORK

2.1 Visual Data Exploration

Visual representations are one of the fundamental components of any
visualization tool [34]. A central component of visual representations

Figure 2: Constructing a visualization with tokens. Figure from [16]
used with permission.

is the mappings from data values to graphical representations [7]. Vi-
sual representations are constructed using a combination of different
visual encodings (e.g., length, position, size, color, etc.) [6]. Thus,
interactivity in visualization tools is often designed to change one or
more mappings between the data and the visual encodings. A popular
method for visualizing data is using pre-existing interactive visualiza-
tion tools (e.g., SpotFire [29] and Tableau [30]). Such visualization
systems allow users to specify direct mappings between their data and
the visual representation without requiring users to have programming
skills. However, such systems require some amount of fundamental
knowledge about the data, the domain, and of visualization techniques.
For instance, to create a scatterplot, users must specify the technique,
and then which of the data attributes to map onto the x and y axes.

There also exist mixed-initiative systems [14] which aim to balance
the responsibility of data visualization between the user and the sys-
tem. One category of such systems is visualization recommendation
tools. Many visualization recommendation systems have been devel-
oped to assist users to visualize their data (e.g., [4, 12, 22, 23, 33]).
They suggest alternative views (visual encodings, data attributes, and
data transformations) based on user-specified data of interest and com-
puted characteristics about the data. Voyager [33] is mixed-initiative
system that couples faceted browsing with visualization recommen-
dation to support visual data exploration based on user-specified data
attributes of interest. VizAssist [4] generates visualizations by requir-
ing users to specify both desired data attributes and tasks.

Instead of requiring users to specify the visualization technique,
mappings, and parameters a priori (or specify data attributes of in-
terest), Visualization by Demonstration extracts this information from
created visual demonstrations. Visualization by Demonstration can be
used independently or to augment existing visualization tools to in-
crease their functionality in concert with direct manipulation controls.

2.2 Flexibility of Spatial Data Organization
Andrews et al. [2] showed how space was used by their participants
as both an external memory aid in which the spatial constructs car-
ried meaning. The participants formed spatial constructs (e.g., groups,
lists, clusters) as a means to organize the information, as well as struc-
ture their analytic process. Various studies also used spatial environ-
ments as a thinking medium to allow users to construct their visual-
izations incrementally [27, 31, 32]. For example, Walny et al. [32]
showed how pen and touch can be used to construct visualizations
on interactive whiteboards. Similarly, SketchStory [20] demonstrates
how users can draw visualization characteristics (e.g., axes of a scat-
terplot) to generate visualizations. Moreover, Schroeder et al. [26]
introduced a sketching technique that enable graphic designers and
artists to construct multivariate time-varying visualizations by paint-
ing on a digital data canvas, sketching data glyphs, and blending to-
gether multiple layers of animated 2D graphics. Satyanarayan and
Heer [25] presented Lyra, a direct manipulation environment that al-
lows users to create customized visualizations by without requiring
coding (e.g., dragging and dropping data attributes directly onto vi-
sual glyphs). Similarly Ren et al. [24] presented iVisDesigner, an in-
teractive environment that allows users to design visualizations inter-
actively, without the need for coding.

Huron et al. [15] proposed a method called “Constructive Visual-
ization”, which advocates for allowing people to create visualizations
by manually moving, adding, and removing physical tokens. In their
study, each token represents a basic data unit. Thus, constructing a

visualization means assembling these tokens to encode the data in a
meaningful way (see Figure 2). They found people use the spatial
environment to construct visualizations and explore their data, where
many spatial arrangements exhibit characteristics similar to formal vi-
sualization techniques. For example, people stacked data points in the
shape of bars to count the number of specific items (similar to the well-
known bar chart visualization technique). Inspired by these studies,
the direct manipulation of spatial encodings of a visual representation
is one of the methods that people can use to provide demonstrations in
the Visualization by Demonstration paradigm.

Prior work also exists which allows users to directly adjust the
position of data points (e.g., documents), interpret this feedback via
a dimensionality reduction model to generate a new spatialization
that better reflect the users understanding of the high-dimensional
data [5, 9, 10]. DimpVis is one of the recent systems which applies em-
bedded interaction as a substitution to other options (e.g., time slider)
for querying and exploring time-varying information visualizations.
The system allows users to directly manipulate the data points in visu-
alizations to perform temporal navigation of the dataset [19].

Visualization by Demonstration advocates for a similar form of di-
rect visual and graphical manipulation of data points. People are given
the ability to reposition and re-encode visual demonstrations of data,
from which the mappings are computed.

3 VISUALIZATION BY DEMONSTRATION

The systems which make use of the Visualization by Demonstration
paradigm allow users to provide visual demonstrations of incremental
changes to the visualization as a method for user interaction. These
demonstrations could be provided by direct manipulation of the spa-
tial and graphical encodings used in a visualization. The systems then
recommend potential transformations from the given demonstration.
In this section we first discuss two different methods that the Visual-
ization by Demonstration paradigm supports for providing demonstra-
tions. We then discuss different classes of transformations supported
by this paradigm. Finally, we present design guidelines that should be
considered by systems adopting Visualization by Demonstration.

3.1 Methods for Providing Demonstrations
Building on the strong research foundation of previous work [2, 15, 16,
32], one of the methods by which the systems adopting Visualization
by Demonstration might allow users to provide visual demonstrations
is by directly adjusting the spatial layouts of data points (e.g., users
stacking data points in the shape of bars to convey their interest in a
bar chart or placing two data points in desired positions along the x
or y axis to demonstrate the attribute to map to the axis). In addi-
tion to direct manipulation of spatial encodings, the systems adopting
this paradigm might allow users to demonstrate desired graphical en-
codings applied to data attributes by adjusting the graphical encodings
used in a visualization (e.g., changing the color or size of data points
in a scatterplot, length or color of bar in a bar chart, and others).

3.2 Recommending Potential Transformations
Visualization by Demonstration suggests possible transformations that
can be applied based on the provided demonstrations. For each
demonstration, the system checks how the current state of the visu-
alization, parameters, and mappings should be transformed to create
meaningful visual representations that match the demonstration. The
system then recommends these possible transformations. We catego-
rize these transformations into four main categories, described below.

Visualization Representation Transformations change the cur-
rent visualization technique to a different visualization technique (e.g.,
transforming from a scatterplot to a bar chart). To convey interest in
transforming to a new visualization technique, users can manipulate
the spatial encoding to create a spatial layout similar to the intended
visualization technique. For example, users can stack two or more
data points vertically or horizontally in a scatterplot to demonstrate
their interest of switching to a vertical or horizontal bar chart.

Data Mapping Transformations define mappings between graph-
ical encodings and data attributes (e.g., mapping color to an attribute).

To convey interest in assigning a graphical encoding to a data attribute,
users can manipulate the corresponding graphical encoding in the vi-
sual representations. For example, users could color one or more data
points red to convey their interest in mapping color to a data attribute.

Axes Transformations assign data attributes to axes of a visual-
ization technique (e.g., assigning an attribute to the x axis of a scat-
terplot). To assign new data attributes to axes, users can manipulate
the corresponding graphical encoding or spatial encoding in the visual
representations. For example, in a scatterplot, users could move one
or more data points to a positions along an axis to demonstrate their
interest in having a scatterplot in which the manipulated data point is
close to the current coordinates, thus changing the attribute assigned to
the axis. Alternatively, in a bar chart, users could change the length of
one of more bars to demonstrate mapping a new attribute to the axis.

View Specification Transformations change the view specifica-
tions without changing the underlying technique (e.g., aggregation,
average, sorting). For example, users could convey their interest in
sorting a bar chart by dragging the longest bar in the current bar chart
to the most left or right side of the axis.

3.3 Design Guidelines
We identify the following design guidelines for applications that make
use of Visualization by Demonstration. These were refined through
our experiences through several design iterations.

G I: Support direct manipulation of visual representations to
foster visual data exploration. Inspired by previous studies [15, 32,
20], Visualization by Demonstration should provide an environment
in which users provide demonstrations by manipulating the spatial and
graphical encodings of data directly in the visual representations.

G II: Balance human and machine workload in the visual data
exploration process. Allowing users to construct demonstrations by
manipulating the spatial and graphical encodings increases the direct-
ness of their interactions. However, manually manipulating all the data
points in a visualization is time consuming. To balance human and
computer’s effort in this process, this paradigm advocates for a mixed-
initiative approach to human-computer collaboration during the visual
data exploration process – users provide visual demonstrations, and
the system provides recommended transformations.

G III: Enable user interactions to drive recommended transfor-
mations. Systems adopting this paradigm should allow users to spec-
ify their intentions or desired aspects of the data by directly manip-
ulating the data points in a visual representation. In aggregate, these
interactions create visual demonstrations which serve as the primary
units by which users communicate their intended changes to the sys-
tem.

G IV: Enhance interpretability of recommendations. Recom-
mended transformations should be presented in way that allow users
to extract why specific transformations were shown and what would be
the resulting outcome if they accept any of the transformations. This
requires recommended transformations to be presented in a right posi-
tion in the interface, and provide users with the rationale behind why
they were recommended.

4 VISEXEMPLAR

To demonstrate the application of Visualization by Demonstration, we
developed VisExemplar (see Figures 3 and 4). All components of
the VisExemplar are implemented using JavaScript and the visualiza-
tion modules are built using the D3 toolkit [3]. Datasets in comma-
separated values format are supported. The implemented system is
available at http://bitbucket.org/bahadorsaket9/vbd.

4.1 Usage Scenario
In this section, we motivate the design of our system and illustrate
the functionality via a usage scenario. We indicate how someone can
utilize VisExemplar to examine data about cars. The car dataset [13]
provides specifications on new cars and trucks for the year 2004. The
dataset contains 122 data points, with 18 data attributes describing
each car. This dataset is used throughout the motivating examples in
this paper.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

334 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

Figure 3: The VisExemplar user interface consists of a ThinkBoard, Recommendation Gallery, and a Detail View panel. ThinkBoard shows
each data point as a circle. The Recommendation Gallery shows visualization technique transformations. The Detail View shows data details,
and also recommended data mapping transformations.

Assume Amy wants to buy a car, and wants to make a data-driven
decision based on this dataset. Amy needs to find a single car to pur-
chase that best meets her needs and preferences, and decides to do so
using VisExemplar. She has limited knowledge in constructing visual-
izations (as well as little domain expertise about cars), but would like
to use visualization to help her make her purchase.

Upon loading the data, VisExemplar shows each car as a green
circle on the ThinkBoard (ThinkBoard is shown in Figure 3). Amy
can interact with the cars (e.g., move, resize, or recolor) on the
ThinkBoard, or search for a specific car or manufacturer that she is
familiar with by using the search box. Two of Amy’s friends drive a
Toyota Prius and a Honda Civic Hybrid. She likes both of them, but
is not as familiar with the attributes that define the cars, so she simply
starts by searching for both. See Figure 4-(a) for more details.

She decides to put the cars that she is interested in close to each
other somewhere on the ThinkBoard. She drags the two cars close to
each other (see Figure 4-(b)). Upon this interaction, the system recog-
nizes that there are possible visual representations in which these two
cars are close to each other. In this case, there exist x− y axes pairs
that would result in a scatterplot consistent with the two example data
points placed in close proximity of each other. The system recom-
mends placing different options for the x and y axis (e.g., length of the
cars (Len) for x axis and weight of the cars for y axis). See Figure 4-
(b) for more details. Amy looks at different attribute options to assign
to the axes. Due to her interest in a med-sized sedan, she decides to
select length of the cars (Len) as the x axis to see how the lengths of
the cars compare across the dataset.

After assigning Len to the x axis, VisExemplar produces the scat-
terplot shown in Figure 4-(c). Amy notices that both cars she initially
dragged close together have a length of 175. She decides to hone her
search of a car to other vehicles that have roughly this size by color-
ing several cars with a length of about 175 red by right clicking on
them and picking the red color (as shown in Figure 4-(d)). The sys-
tem automatically extracts data attributes that can be mapped to color
(e.g., cylinder (Cyl), as well as others). Data attributes which can be
assigned to color are indicated by a brush icon (�) next to the data
attributes in the detail panel (see Figure 4-(d)). In this case, Amy
notices that the system recommended assigning color to the number

of cylinders (Cyl). Intruiged, she decides to accept this mapping by
double-clicking on the brush icon. Figure 4-(e) shows the resulting
view, where the color mapping is shown in the legend on the Detail
View panel.

Amy notices that many of the cars with a length of 175 are 4 cylin-
der cars (shown in red), and asks herself “how many of the cars have
a length of 175, compared to the lengths of other cars?”. She stacks
a few cars with the length of 175 vertically on the top of each other
to group these items together and count them (Figure 4-(f)). Based on
her example, VisExemplar recommends a selection of bar charts. The
recommendations are based on the attributes that the stacked cars have
in common. Each proposed bar chart has one data attribute in the x
axis and the corresponding count of cars in the y axis. The bars are
drawn as a box containing the counted cars. Amy explores different
recommended bar charts by scrolling the Recommendation Gallery,
and chooses one showing length as an axis labelled “Stack vertically
based on Len.” (Figure 4-(f)).

At this point, Amy has a visualization where the x axis of the bar
chart assigned to Len and the y axis as the number of cars (Figure 4-
(g)). By looking at the y axis of the bar chart Amy notices that among
all 122 cars only 34 of the cars have a length between 175 and 180.
Among these, 13 are 4 cylinder cars (colored red). Amy hovers over
these to get more details, and finds two additional cars (Toyota Corolla
CE and Honda Civic EX) which have the characteristics that she has
found interesting up to this point.

She wants to switch back to a scatterplot to see additional attributes
on the axis to make a more detailed comparison. She drags these four
cars out of the bars, demonstrating the intent to switch to a scatter-
plot. The system will again compute the x− y axes pairs that would
result in a scatterplot given the locations of the dragged cars. Amy
starts exploring different recommended scatterplots by scrolling the
Recommendation Gallery. Suddenly the label Retail Price in one of
the thumbnails grabs her attention (Figure 4-(h)). She picks that rec-
ommendation as she realizes she has ignored price up to this point. The
visualization shows that all four cars are roughly the same in price, and
decides to schedule a test drive for each of them as she feels confident
in her choices, and has learned a bit more about attributes of cars that
define her subjective preference for cars.

(a) Searched for two cars on the search box. Border line of the selected cars
changed to dashed line.

(b) Dragged two cars close to each other. The system recommended options
for assigning to the x and y axis.

(c) Assigned Len to the x axis. (d) Colored two cars. The system recommended data attributes that can be
mapped to color.

(e) Color mapping is shown. Color is mapped to Cylinder (Cyl). (f) Stacked a few of the cars with the length of 175 vertically on the top of each
other. The system recommends different bar charts.

(g) Selected a bar chart where x axis assigned to Len and the y axis as the
number of cars.

(h) Selected a scatterplot where x−y axes indicate Retail Price and City MPG.

Figure 4: A series of screenshots showing the usage of Visualization by Demonstration in VisExemplar.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

SAKET ET AL.: VISUALIZATION BY DEMONSTRATION: AN INTERACTION PARADIGM FOR VISUAL DATA EXPLORATION 335

Figure 3: The VisExemplar user interface consists of a ThinkBoard, Recommendation Gallery, and a Detail View panel. ThinkBoard shows
each data point as a circle. The Recommendation Gallery shows visualization technique transformations. The Detail View shows data details,
and also recommended data mapping transformations.

Assume Amy wants to buy a car, and wants to make a data-driven
decision based on this dataset. Amy needs to find a single car to pur-
chase that best meets her needs and preferences, and decides to do so
using VisExemplar. She has limited knowledge in constructing visual-
izations (as well as little domain expertise about cars), but would like
to use visualization to help her make her purchase.

Upon loading the data, VisExemplar shows each car as a green
circle on the ThinkBoard (ThinkBoard is shown in Figure 3). Amy
can interact with the cars (e.g., move, resize, or recolor) on the
ThinkBoard, or search for a specific car or manufacturer that she is
familiar with by using the search box. Two of Amy’s friends drive a
Toyota Prius and a Honda Civic Hybrid. She likes both of them, but
is not as familiar with the attributes that define the cars, so she simply
starts by searching for both. See Figure 4-(a) for more details.

She decides to put the cars that she is interested in close to each
other somewhere on the ThinkBoard. She drags the two cars close to
each other (see Figure 4-(b)). Upon this interaction, the system recog-
nizes that there are possible visual representations in which these two
cars are close to each other. In this case, there exist x− y axes pairs
that would result in a scatterplot consistent with the two example data
points placed in close proximity of each other. The system recom-
mends placing different options for the x and y axis (e.g., length of the
cars (Len) for x axis and weight of the cars for y axis). See Figure 4-
(b) for more details. Amy looks at different attribute options to assign
to the axes. Due to her interest in a med-sized sedan, she decides to
select length of the cars (Len) as the x axis to see how the lengths of
the cars compare across the dataset.

After assigning Len to the x axis, VisExemplar produces the scat-
terplot shown in Figure 4-(c). Amy notices that both cars she initially
dragged close together have a length of 175. She decides to hone her
search of a car to other vehicles that have roughly this size by color-
ing several cars with a length of about 175 red by right clicking on
them and picking the red color (as shown in Figure 4-(d)). The sys-
tem automatically extracts data attributes that can be mapped to color
(e.g., cylinder (Cyl), as well as others). Data attributes which can be
assigned to color are indicated by a brush icon (�) next to the data
attributes in the detail panel (see Figure 4-(d)). In this case, Amy
notices that the system recommended assigning color to the number

of cylinders (Cyl). Intruiged, she decides to accept this mapping by
double-clicking on the brush icon. Figure 4-(e) shows the resulting
view, where the color mapping is shown in the legend on the Detail
View panel.

Amy notices that many of the cars with a length of 175 are 4 cylin-
der cars (shown in red), and asks herself “how many of the cars have
a length of 175, compared to the lengths of other cars?”. She stacks
a few cars with the length of 175 vertically on the top of each other
to group these items together and count them (Figure 4-(f)). Based on
her example, VisExemplar recommends a selection of bar charts. The
recommendations are based on the attributes that the stacked cars have
in common. Each proposed bar chart has one data attribute in the x
axis and the corresponding count of cars in the y axis. The bars are
drawn as a box containing the counted cars. Amy explores different
recommended bar charts by scrolling the Recommendation Gallery,
and chooses one showing length as an axis labelled “Stack vertically
based on Len.” (Figure 4-(f)).

At this point, Amy has a visualization where the x axis of the bar
chart assigned to Len and the y axis as the number of cars (Figure 4-
(g)). By looking at the y axis of the bar chart Amy notices that among
all 122 cars only 34 of the cars have a length between 175 and 180.
Among these, 13 are 4 cylinder cars (colored red). Amy hovers over
these to get more details, and finds two additional cars (Toyota Corolla
CE and Honda Civic EX) which have the characteristics that she has
found interesting up to this point.

She wants to switch back to a scatterplot to see additional attributes
on the axis to make a more detailed comparison. She drags these four
cars out of the bars, demonstrating the intent to switch to a scatter-
plot. The system will again compute the x− y axes pairs that would
result in a scatterplot given the locations of the dragged cars. Amy
starts exploring different recommended scatterplots by scrolling the
Recommendation Gallery. Suddenly the label Retail Price in one of
the thumbnails grabs her attention (Figure 4-(h)). She picks that rec-
ommendation as she realizes she has ignored price up to this point. The
visualization shows that all four cars are roughly the same in price, and
decides to schedule a test drive for each of them as she feels confident
in her choices, and has learned a bit more about attributes of cars that
define her subjective preference for cars.

(a) Searched for two cars on the search box. Border line of the selected cars
changed to dashed line.

(b) Dragged two cars close to each other. The system recommended options
for assigning to the x and y axis.

(c) Assigned Len to the x axis. (d) Colored two cars. The system recommended data attributes that can be
mapped to color.

(e) Color mapping is shown. Color is mapped to Cylinder (Cyl). (f) Stacked a few of the cars with the length of 175 vertically on the top of each
other. The system recommends different bar charts.

(g) Selected a bar chart where x axis assigned to Len and the y axis as the
number of cars.

(h) Selected a scatterplot where x−y axes indicate Retail Price and City MPG.

Figure 4: A series of screenshots showing the usage of Visualization by Demonstration in VisExemplar.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

336 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

4.2 The VisExemplar Interface
Figure 3 shows VisExemplar’s interface, consist of a ThinkBoard,
a Recommendation Gallery, and a Detail View panel. ThinkBoard
is a thinking medium for users and allows them to construct their
demonstrations through direct manipulation of the visual representa-
tion. Moreover, possible Axes and View Specification transformations
be shown on the ThinkBoard. Visual Representation transformations
will be presented in the Recommendation Gallery. The primary goal
of the Detail View panel is to show details of selected data points.
By hovering on a data point on the interaction board, the Detail View
panel will show detail information related to that data point. See Fig-
ure 3 for more details. In addition, Data Mapping transformations will
be shown as small icons on this panel.

VisExemplar realizes the four Visualization by Demonstration de-
sign guidelines presented in Section 3 as follows. VisExemplar pro-
vides an environment similar to a spatial workspace in which users
provide demonstrations by manipulating the spatial and graphical en-
codings used in visual representations (G I). In addition, to balance
human and computer effort during data exploration process, VisEx-
emplar suggests variety of possible relevant transformations in the
form of Visual Representations transformations, Data Mapping trans-
formations, Axes transformations, and View Specification transforma-
tions. Depending on the transformation type, they will be shown in
different forms and locations on the interface (G II). VisExemplar al-
lows users to provide demonstrations by directly manipulating the data
points in a visual representation (G III). Finally VisExemplar uses
different methods for showing recommendations to the user. First, vi-
sual representation transformations are shown as thumbnails below the
ThinkBoard. These are ordered and colored based on their computed
relevance to the visual demonstration. Data mapping transformations
are shown as icons in the detail panel, and axes transformations on the
axes. This helps users browse the possible space of transformations
and interpret their result (G IV).

4.3 Transformations Supported in VisExemplar
VisExemplar currently supports four categories of transformations.

Visual Representation Transformation. VisExemplar currently
supports transformations from bar charts to a scatterplots and vice
versa. Recommended Visual Representation Transformations will be
shown on the Recommendation Gallery. Each recommended trans-
formation is shown as a thumbnail in the gallery. Users can explore
different transformations by scrolling through gallery. Each thumb-
nail consists of a textual explanation describing what the visualization
in the thumbnail is showing (e.g., Stack vertically based on Cylinder)
and a visualization which gives an overview of the transformation. We
decided to show this type of recommendation as thumbnails because
during the design process we found it difficult to imagine the result-
ing changes from one visual representation to another without seeing
the resulting view. Relevance of this type of transformations is dually
encoded by color and position. By default, we use a light gray color
as background for recommended transformations in the gallery. We
show the relevance of the recommended transformations by adjusting
the darkness of the background color, the lighter the background color
the lower the relevance. In addition, the recommended transforma-
tions are ordered left to right based on relevant (left being highest).
Figures 4-(f) and 4-(h) indicate examples of Visual Representation
transformations in VisExemplar.

Data Mapping Transformation: The current version of VisExem-
plar supports color and size encodings. These types of transformations
are shown as small icons on Detail View panel corresponding to the
attribute which is being recommended to map to the visual demonstra-
tion. We decided to show this type of transformation on the Detail
View panel since each icon is located beside corresponding data at-
tributes. For those recommended data attributes that can be assigned
to color, a small brushing icon (�) will appear near the data attributes
on the detail panel. Similarly, the system recommends data attributes
to be mapped to size by showing a small expand icon (�) beside the
appropriate data attributes on the Detail View panel. The background
color of the data attributes on hover shows the relevance. The lighter

Figure 5: An example of a view specification transformation.

the background color the lower the relevance. Hovering on the recom-
mended data attributes will also show a preview of resulting changes.
A user can apply any of the recommended transformations by double
clicking on the suggested data attribute. Figure 4-(d) shows examples
of Data Mapping transformations in VisExemplar.

Axes Transformation. We show Axes transformations directly on
the corresponding axes in the ThinkBoard. In the early stages of our
design process, we noticed that it is easier to understand the meaning
of these type of transformations when they are located close to the
corresponding axis. For this type of transformation, the position of the
data attributes beside each axis show their relevance. The higher the
data attribute the higher the relevance. Figure 4-(b) shows examples
of Axes transformations in VisExemplar.

View Specification Transformation. This type of transformation
is shown on the ThinkBoard below the visualization technique. One
of these transformations that VisExemplar currently supports is sorting
the bar chart in ascending or descending order (See Figure 5).

4.4 Recommendation Engine
When a user performs an interaction with the visual representation and
generates a visual demonstration, the recommendation engine of our
system accepts the interaction as input, and produces the recommenda-
tions as outpout for transformations mentioned in Section 4.3. VisEx-
emplar allows direct manipulation of three encodings of data points
including position, color, and size (see Figure 6-(A)). Direct manipu-
lation of each encoding will invoke a series of intent functions related
to that specific encoding (see Figure 6-(C)). Based on the demonstra-
tions provided, the intent functions determine which transformations
are most relevant. VisExemplar contains seven intent functions. All
related intent functions are checked against every interaction. For ex-
ample, by directly re-positioning data points in a scatterplot to new
x coordinates, one of the intent functions which will be invoked is
the assigning X axis function. Considering the points that have been
moved, the system then recommends potential data attributes for the
x axis that would result in a scatterplot where the moved data points
would be as close as possible to the new x coordinates (see Figure 6).

As a result of each interaction, the recommendation engine will up-
date the recommendation table (see Figure 6-(D)). The recommenda-
tion table consists of a set of potential transformations. Each row of
the table represents a potential transformation. Each transformation
consists of a name (e.g., xAxis Cylinder), relevance, and location on
the interface. The table will be created only once and will be updated
after each interaction. The relevance value for each transformation in-
dicates the number of times the transformation is generated. The rele-
vance value is normalized to a range of [0,1] and the table is updated to
contain the normalized relevance value for each transformation. The
system only shows transformations with relevance above 0.3. Upon
accepting a transformation the changes are applied and relevance val-
ues of all recommendations reset. The transformation type column
dictates where each transformation is shown in the interface.

The recommendation engine then passes the recommendation table
to the interface. The interface will update the visualization based on
the given recommendation table; See Figure 6-(E).

4.4.1 Intent Functions
Depending on the interaction, any of seven currently-supported intent
functions might be invoked (see Figure 6-(C)). For example, changing
the position of a data point could invoke functions 1, 2, 3 or functions 4
or 5, depending on current state of the visualization (scatterplot or bar
chart). If the current visualization is a scatterplot, then resizing a data

User Interaction
with Data Points

Position

Resize

Color

Name Relevance Transformation Type

xAxis_Horsepower 0.6 Axes

yAxis_Cylinder 0.5 Axes

Bar_Cylinder 0.4 Visual Representation

yAxis_SUV 0.2 Axes

 Interface Recommendation Engine

Recommend data attributes
to be mapped to size

Recommendation Table

A B

D
If scatterplot

Recommend data attributes
for x Axis

Recommend data attributes
for y Axis

Recommend possible bar
charts

Recommend possible
scatterplots

Recommend sorting the bar
chart

Recommend data attributes
to be mapped to color

If bar chart

If scatterplot

If scatterplot OR bar chart

1

2

3

4

5

6

7

 HP

 Cyl

Cyl

 BMW

HP : 20
Cyl : 4
SUV : 1
Small: 0
Width: 70

Interactive Visualization

Intent FunctionsC

E

Figure 6: VisExemplar’s Low-level Architecture. A) Recommendation engine takes user interactions as input. B) A series of intent functions
drive the recommendation table. C) Direct manipulation of each encoding will invoke a series of intent functions related to that specific
encoding. D) Recommendation Table will be updated after each interaction and stores a ranked list of potential transformations. E) The updated
recommendation table feeds the recommendations in the user interface.

point invokes intent function 6. Recoloring a data point will invoke
intent function 7 regardless of the current state of visualization. Below
we explain how each of these functions work. Full support of Visual-
ization by Demonstration will require additional intent functions and
our system design supports this extensibility.

The notations used in this section are summarized in Table 1. We
refer to the data generally in normalized form, i.e. scaled into the
interval [0,1] by attribute:

d̃i j =
di j −min(d· j)

max(d· j)−min(d· j)
, (1)

where min(v) and max(v) indicate the smallest and largest element
respectively of vector v.

Position: Depending on the type of the current visualization and
user interactions, upon changing the positions of data points, intent
functions 1, 2, or 3 (for a scatterplot), or functions 4 or 5 (for a bar
chart) are triggered. In this section, we describe how each of these five
functions will be triggered after moving the data points.

If the current visualization is a scatterplot, upon the movement of
the point, the system either recommends changing the Axes (changing
the attributes assigned to x or y-axis) or changing the visual represen-
tation to a bar chart.

Intent Function 1 (Figure 6-(C)-1): After a position-changing in-
teraction, the system searches for data attributes to assign to the axes
in a scatterplot based on the positions of the moved data points. For
example, in Figure 7, the user starts with a scatterplot whose x-axis
represents miles-per-gallon (MPG). When the user moves a data point
(black arrow in Figure 7 (a)), the x coordinates of the scatterplot no
longer map to MPG. Rather, their position is better aligned with the
length attribute (Figure 7 (b)). In this case, the system recommends
assigning length to the x-axis.

In detail, we linearly normalize coordinate vectors x and y into x̃
and ỹ in the same way as Eq. 1, so that they are in the range of [0,1].
As a result, coordinate values and data attributes values are in the
same scale. Then, we find an data attribute that minimizes the sum
of squared differences between normalized coordinate values and data

Table 1: Notation used in this paper.

NOTATION DESCRIPTION

n The number of data points
m The number of data attributes
di The i-th data point
di j The j-th attribute value of the i-th data point
d· j The j-th attribute vector
x, y The vector of plotted coordinates in the x (or y) axis
xi, yi The plotted value of the i-th data point in x or y
ci The plotted color of the i-th data point
ai The plotted area of the i-th data point
ṽ The normalized value of vector v into the interval [0,1]
|S| The number of elements in a set S

attribute values of data points. In other words, the system recommends
attribute j∗ to be assigned to x-axis such that

j∗ = argmin j
∥∥d̃· j − x̃

∥∥2
2 .

Intent Function 2 (Figure 6-(C)-2): In the same way, the system
also recommends data attribute(s) for the y-axis of a scatterplot.

Intent Function 3 (Figure 6-(C)-3): If a position-changing inter-
action results in more than three data points lined up in a row, the sys-
tem then checks if the three data points are within a specified distance
from each other. If so, the system detects user interest for transforming
the visualization into a bar chart. In other words, the system interprets
the visual demonstration of “stacked data points” as a user’s interest
in transition to a bar chart. The function then computes common data
attributes shared by the aligned data points. Finally, it updates the rec-
ommendation table. For instance, if a user places four data points that
represent SUVs with six cylinders on top of each other, the system
recommends a bar chart by car type (e.g., SUVs, sports cars, etc) and
a bar chart by the number of cylinders.

If the current visualization is a bar chart, users can move the data
points inside each bar or move a bar itself within the bar chart. Note
that each bar is shown as a visible box which contain a set of corre-
sponding data points.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

SAKET ET AL.: VISUALIZATION BY DEMONSTRATION: AN INTERACTION PARADIGM FOR VISUAL DATA EXPLORATION 337

4.2 The VisExemplar Interface
Figure 3 shows VisExemplar’s interface, consist of a ThinkBoard,
a Recommendation Gallery, and a Detail View panel. ThinkBoard
is a thinking medium for users and allows them to construct their
demonstrations through direct manipulation of the visual representa-
tion. Moreover, possible Axes and View Specification transformations
be shown on the ThinkBoard. Visual Representation transformations
will be presented in the Recommendation Gallery. The primary goal
of the Detail View panel is to show details of selected data points.
By hovering on a data point on the interaction board, the Detail View
panel will show detail information related to that data point. See Fig-
ure 3 for more details. In addition, Data Mapping transformations will
be shown as small icons on this panel.

VisExemplar realizes the four Visualization by Demonstration de-
sign guidelines presented in Section 3 as follows. VisExemplar pro-
vides an environment similar to a spatial workspace in which users
provide demonstrations by manipulating the spatial and graphical en-
codings used in visual representations (G I). In addition, to balance
human and computer effort during data exploration process, VisEx-
emplar suggests variety of possible relevant transformations in the
form of Visual Representations transformations, Data Mapping trans-
formations, Axes transformations, and View Specification transforma-
tions. Depending on the transformation type, they will be shown in
different forms and locations on the interface (G II). VisExemplar al-
lows users to provide demonstrations by directly manipulating the data
points in a visual representation (G III). Finally VisExemplar uses
different methods for showing recommendations to the user. First, vi-
sual representation transformations are shown as thumbnails below the
ThinkBoard. These are ordered and colored based on their computed
relevance to the visual demonstration. Data mapping transformations
are shown as icons in the detail panel, and axes transformations on the
axes. This helps users browse the possible space of transformations
and interpret their result (G IV).

4.3 Transformations Supported in VisExemplar
VisExemplar currently supports four categories of transformations.

Visual Representation Transformation. VisExemplar currently
supports transformations from bar charts to a scatterplots and vice
versa. Recommended Visual Representation Transformations will be
shown on the Recommendation Gallery. Each recommended trans-
formation is shown as a thumbnail in the gallery. Users can explore
different transformations by scrolling through gallery. Each thumb-
nail consists of a textual explanation describing what the visualization
in the thumbnail is showing (e.g., Stack vertically based on Cylinder)
and a visualization which gives an overview of the transformation. We
decided to show this type of recommendation as thumbnails because
during the design process we found it difficult to imagine the result-
ing changes from one visual representation to another without seeing
the resulting view. Relevance of this type of transformations is dually
encoded by color and position. By default, we use a light gray color
as background for recommended transformations in the gallery. We
show the relevance of the recommended transformations by adjusting
the darkness of the background color, the lighter the background color
the lower the relevance. In addition, the recommended transforma-
tions are ordered left to right based on relevant (left being highest).
Figures 4-(f) and 4-(h) indicate examples of Visual Representation
transformations in VisExemplar.

Data Mapping Transformation: The current version of VisExem-
plar supports color and size encodings. These types of transformations
are shown as small icons on Detail View panel corresponding to the
attribute which is being recommended to map to the visual demonstra-
tion. We decided to show this type of transformation on the Detail
View panel since each icon is located beside corresponding data at-
tributes. For those recommended data attributes that can be assigned
to color, a small brushing icon (�) will appear near the data attributes
on the detail panel. Similarly, the system recommends data attributes
to be mapped to size by showing a small expand icon (�) beside the
appropriate data attributes on the Detail View panel. The background
color of the data attributes on hover shows the relevance. The lighter

Figure 5: An example of a view specification transformation.

the background color the lower the relevance. Hovering on the recom-
mended data attributes will also show a preview of resulting changes.
A user can apply any of the recommended transformations by double
clicking on the suggested data attribute. Figure 4-(d) shows examples
of Data Mapping transformations in VisExemplar.

Axes Transformation. We show Axes transformations directly on
the corresponding axes in the ThinkBoard. In the early stages of our
design process, we noticed that it is easier to understand the meaning
of these type of transformations when they are located close to the
corresponding axis. For this type of transformation, the position of the
data attributes beside each axis show their relevance. The higher the
data attribute the higher the relevance. Figure 4-(b) shows examples
of Axes transformations in VisExemplar.

View Specification Transformation. This type of transformation
is shown on the ThinkBoard below the visualization technique. One
of these transformations that VisExemplar currently supports is sorting
the bar chart in ascending or descending order (See Figure 5).

4.4 Recommendation Engine
When a user performs an interaction with the visual representation and
generates a visual demonstration, the recommendation engine of our
system accepts the interaction as input, and produces the recommenda-
tions as outpout for transformations mentioned in Section 4.3. VisEx-
emplar allows direct manipulation of three encodings of data points
including position, color, and size (see Figure 6-(A)). Direct manipu-
lation of each encoding will invoke a series of intent functions related
to that specific encoding (see Figure 6-(C)). Based on the demonstra-
tions provided, the intent functions determine which transformations
are most relevant. VisExemplar contains seven intent functions. All
related intent functions are checked against every interaction. For ex-
ample, by directly re-positioning data points in a scatterplot to new
x coordinates, one of the intent functions which will be invoked is
the assigning X axis function. Considering the points that have been
moved, the system then recommends potential data attributes for the
x axis that would result in a scatterplot where the moved data points
would be as close as possible to the new x coordinates (see Figure 6).

As a result of each interaction, the recommendation engine will up-
date the recommendation table (see Figure 6-(D)). The recommenda-
tion table consists of a set of potential transformations. Each row of
the table represents a potential transformation. Each transformation
consists of a name (e.g., xAxis Cylinder), relevance, and location on
the interface. The table will be created only once and will be updated
after each interaction. The relevance value for each transformation in-
dicates the number of times the transformation is generated. The rele-
vance value is normalized to a range of [0,1] and the table is updated to
contain the normalized relevance value for each transformation. The
system only shows transformations with relevance above 0.3. Upon
accepting a transformation the changes are applied and relevance val-
ues of all recommendations reset. The transformation type column
dictates where each transformation is shown in the interface.

The recommendation engine then passes the recommendation table
to the interface. The interface will update the visualization based on
the given recommendation table; See Figure 6-(E).

4.4.1 Intent Functions
Depending on the interaction, any of seven currently-supported intent
functions might be invoked (see Figure 6-(C)). For example, changing
the position of a data point could invoke functions 1, 2, 3 or functions 4
or 5, depending on current state of the visualization (scatterplot or bar
chart). If the current visualization is a scatterplot, then resizing a data

User Interaction
with Data Points

Position

Resize

Color

Name Relevance Transformation Type

xAxis_Horsepower 0.6 Axes

yAxis_Cylinder 0.5 Axes

Bar_Cylinder 0.4 Visual Representation

yAxis_SUV 0.2 Axes

 Interface Recommendation Engine

Recommend data attributes
to be mapped to size

Recommendation Table

A B

D
If scatterplot

Recommend data attributes
for x Axis

Recommend data attributes
for y Axis

Recommend possible bar
charts

Recommend possible
scatterplots

Recommend sorting the bar
chart

Recommend data attributes
to be mapped to color

If bar chart

If scatterplot

If scatterplot OR bar chart

1

2

3

4

5

6

7

 HP

 Cyl

Cyl

 BMW

HP : 20
Cyl : 4
SUV : 1
Small: 0
Width: 70

Interactive Visualization

Intent FunctionsC

E

Figure 6: VisExemplar’s Low-level Architecture. A) Recommendation engine takes user interactions as input. B) A series of intent functions
drive the recommendation table. C) Direct manipulation of each encoding will invoke a series of intent functions related to that specific
encoding. D) Recommendation Table will be updated after each interaction and stores a ranked list of potential transformations. E) The updated
recommendation table feeds the recommendations in the user interface.

point invokes intent function 6. Recoloring a data point will invoke
intent function 7 regardless of the current state of visualization. Below
we explain how each of these functions work. Full support of Visual-
ization by Demonstration will require additional intent functions and
our system design supports this extensibility.

The notations used in this section are summarized in Table 1. We
refer to the data generally in normalized form, i.e. scaled into the
interval [0,1] by attribute:

d̃i j =
di j −min(d· j)

max(d· j)−min(d· j)
, (1)

where min(v) and max(v) indicate the smallest and largest element
respectively of vector v.

Position: Depending on the type of the current visualization and
user interactions, upon changing the positions of data points, intent
functions 1, 2, or 3 (for a scatterplot), or functions 4 or 5 (for a bar
chart) are triggered. In this section, we describe how each of these five
functions will be triggered after moving the data points.

If the current visualization is a scatterplot, upon the movement of
the point, the system either recommends changing the Axes (changing
the attributes assigned to x or y-axis) or changing the visual represen-
tation to a bar chart.

Intent Function 1 (Figure 6-(C)-1): After a position-changing in-
teraction, the system searches for data attributes to assign to the axes
in a scatterplot based on the positions of the moved data points. For
example, in Figure 7, the user starts with a scatterplot whose x-axis
represents miles-per-gallon (MPG). When the user moves a data point
(black arrow in Figure 7 (a)), the x coordinates of the scatterplot no
longer map to MPG. Rather, their position is better aligned with the
length attribute (Figure 7 (b)). In this case, the system recommends
assigning length to the x-axis.

In detail, we linearly normalize coordinate vectors x and y into x̃
and ỹ in the same way as Eq. 1, so that they are in the range of [0,1].
As a result, coordinate values and data attributes values are in the
same scale. Then, we find an data attribute that minimizes the sum
of squared differences between normalized coordinate values and data

Table 1: Notation used in this paper.

NOTATION DESCRIPTION

n The number of data points
m The number of data attributes
di The i-th data point
di j The j-th attribute value of the i-th data point
d· j The j-th attribute vector
x, y The vector of plotted coordinates in the x (or y) axis
xi, yi The plotted value of the i-th data point in x or y
ci The plotted color of the i-th data point
ai The plotted area of the i-th data point
ṽ The normalized value of vector v into the interval [0,1]
|S| The number of elements in a set S

attribute values of data points. In other words, the system recommends
attribute j∗ to be assigned to x-axis such that

j∗ = argmin j
∥∥d̃· j − x̃

∥∥2
2 .

Intent Function 2 (Figure 6-(C)-2): In the same way, the system
also recommends data attribute(s) for the y-axis of a scatterplot.

Intent Function 3 (Figure 6-(C)-3): If a position-changing inter-
action results in more than three data points lined up in a row, the sys-
tem then checks if the three data points are within a specified distance
from each other. If so, the system detects user interest for transforming
the visualization into a bar chart. In other words, the system interprets
the visual demonstration of “stacked data points” as a user’s interest
in transition to a bar chart. The function then computes common data
attributes shared by the aligned data points. Finally, it updates the rec-
ommendation table. For instance, if a user places four data points that
represent SUVs with six cylinders on top of each other, the system
recommends a bar chart by car type (e.g., SUVs, sports cars, etc) and
a bar chart by the number of cylinders.

If the current visualization is a bar chart, users can move the data
points inside each bar or move a bar itself within the bar chart. Note
that each bar is shown as a visible box which contain a set of corre-
sponding data points.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

338 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

Intent Function 4 (Figure 6-(C)-4): If the user drags a data point
out of a bar in a bar chart, the system interprets it as a demonstration of
changing the visual representation to a scatterplot. After the user drags
out two or more data points, the system searches for data attributes that
will be assigned to axes of a new scatterplot (using a similar method to
the Intent Functions 1 and 2). Based on the current x and y coordinates
of the moved points, the system recommends potential x and y axes
so that the new scatterplot representations of the moved points would
be similar to the current user-defined positions. The recommendations
with previews will be shown in the Recommendation Gallery.

Intent Function 5 (Figure 6-(C)-5): Users can drag and drop any
of the bars shown in a bar chart. If the user drags the longest bar in the
bar chart to the left most side of the bar chart the system recommends
sorting the bar chart descending. If the user drags the longest bar in the
bar chart to the right most side of the bar chart the system recommends
sorting the bar chart in the ascending order.

Resizing: Users can resize data points any time during the data
exploration process. Users can adjust the size by dragging a small
handle (tiny black circle) on the perimeter of the data point.

Intent Function 6 (Figure 6-(C)-6): When a user resizes a data
point in a scatterplot, the system interprets it as the user’s interest in
encoding a data attribute to the demonstrated sizes of data points. In
order to provide enough information to the system for recommend-
ing a mapping from a data attribute to data point sizes, the user has to
resize two or more data points. The system shows recommended trans-
formations that are above a developer-defined threshold by showing a
expand icon (�) beside those attributes on the Detail View. Specifi-
cally, we first normalize the sizes of data points the user has adjusted
in a way that reflects the fact that the minimum is nonzero and that
we are seeking changes in the same direction (bigger or smaller) by
setting the default drawing value to 0.5. We calculate a scaled value
ãi ∀i ∈ S (the set of modified points) as follows:

ãi =

1
2

(
1+ ai−a0

max(a)−a0

)
if ai > a0

1
2

(
ai−min(a)
a0−min(a)

)
if ai < a0

,

where ai is the current plotted size of the i-th data point, a0 is the
default plotting size, and the max and min functions return the pre-
determined maximum and minimum drawing sizes for points in the
visualization. The system recommends attribute j∗ for size encoding
such that

j∗ = argmin j ∑
i∈S

(d̃i j − ãi)
2,

where S is the set of resized data points.

Recoloring: Users can recolor a data point by right clicking on
it and picking a color from the pop-up menu. VisExemplar currently
supports three colors: red, blue, and green (default).

Intent Function 7 (Figure 6-(C)-7): We now describe the intent
function triggered by changing the colors of data points. For coloring
interactions, we consider categorical attributes only and ignore numer-
ical attributes. We define an attribute as categorical if the number of
unique values present is fewer than ten and also fewer than half of the
number of data points. That is, attribute j is categorical if and only if

|unique(d· j)| ≤ min(10,
n
2
)

If the user changes the color of one data point, the system makes
a recommendation for each categorical attribute, suggesting applying
the same recoloring to all other points sharing the value. For example,
if the user changes the color of an AWD sedan with 6 cylinders to red,
the system recommends three options: coloring all AWD vehicles red,
coloring all sedans red, or coloring all 6-cylinder cars red.

When a user colors two or more data points, two conditions are
checked to find the appropriate mapping. The first checks for positive
correspondence between a data attribute and the assigned color. The
condition is satisfied for an attribute if all points given the same color
also have the same value for that attribute. The second condition tests

Cost

MPG

(a) (b)

Length

MPG

Cost

Figure 7: Position-changing interaction. (a) A scatterplot with MPG
as x-axis and cost as y-axis. A user moves a red data point. As a result,
the system recommends assigning length attribute to x-axis. (b) A
visual representation of data distributions for potential data attributes.

that whenever two points have different colors, they have different at-
tribute values. Given a set of indices of k modified points i1, . . . , ik, the
two conditions on attribute j are, for all pairs (k, p) : k, p ∈ i1, . . . , ik
and k �= p:

Condition I: If ck = cp, then dk j = dp j

Condition II: If ck �= cp, then dk j �= dp j

If all the user-colored data points have the same color, the system
checks every categorical data attribute to see if its attribute values
of the colored data points are the same using Condition I. The sys-
tem then recommends all data attributes that meet Condition I. For
example, suppose the user colors an AWD sedan with 6 cylinders
and a non-AWD sedan with 6 cylinders red. Since both cars are 6-
cylinder sedans, two attributes, car-body-type (which includes sedan)
and number-of-cylinders, satisfy Condition I. The system recommends
two options: coloring all sedans red or coloring all 6-cylinder cars red.

If the data points are colored with two or more colors, the system
uses both conditions to evaluate attribute mappings. The two or more
colors specify not only the mapping of color to an attribute, but the
assignment of values of that attribute to one specific color. First, Con-
dition I is applied across each subset of the re-colored points that have
been assigned the same color. This discovers the data attributes shared
by each colored group of the modified points. Second, Condition II
is applied with the attributes revealed by Condition I to find which
attributes can account for the differences across color groups. For ex-
ample, suppose the user re-colors three data points: two representing
cars with attribute values given by the tuples (AWD, sedan, 6 cylin-
ders) and (FWD, sedan, 6 cylinders) are colored red; the third, (AWD,
sedan, 4 cylinders), is colored blue. In the red group, both body-type
(e.g., sedan) and number-of-cylinders satisfy Condition I. However,
when Condition II is checked, we see that only the cylinder attribute
satisfies both conditions. The system recommends mapping the cylin-
ders attribute to color by coloring 6-cylinder cars red and 4-cylinder
cars blue. A brush icon (�) beside each of the candidate attributes on
the Detail View shows the recommendation to the user.

5 DISCUSSION AND FUTURE WORK

5.1 Interoperability with Direct Manipulation
There is an inherent tradeoff between the flexibility of Visualiza-
tion by Demonstration and the loss of formality and expressive-
ness. A given demonstration could imply multiple transformations
and multiple demonstrations might imply the same transformation. Of
course this many to many relationship between given demonstrations
and transformations raises technical challenges in translating given
demonstrations into meaningful transformations. Early on during the
process of providing demonstrations, mapping the given demonstra-
tions to possible transformations might be more ambiguous but as
users continue completing their demonstrations and providing more
evidence and training data to the system, the number of possible trans-
formations would decrease (and ideally become more accurate with re-
spect to the user’s goals). This is similar to interactive machine learn-
ing [11], in which more examples lead to more accurate decisions.
For instance, by coloring a single data point blue, there may be many
recommended transformations because the system has less accuracy

about the user intentions. However, coloring a few more data points
would increase the accuracy of the recommended transformations.

Visualization by Demonstration can be used independently or aug-
ment the interaction design of existing visualization tools. For exam-
ple, the interaction design of SpotFire [1] can be enhanced by Visu-
alization by Demonstration. In this case, expert users could create a
bar chart by specifying the data attributes for x− y axes and a visu-
alization technique from the control panel. In addition, non-expert
users could benefit from the Visualization by Demonstration approach
by providing visual demonstrations to the visualization incrementally
and letting the system compute possible transformations.

An important avenue for continued research is conducting a study to
compare Visualization by Demonstration with interaction paradigms
applied in other existing visualization tools. This requires a separate
in-depth study utilizing both qualitative and quantitative techniques
to measure the impact of Visualization by Demonstration compared
to other interaction methods, using various usability (e.g., time and
error) and user experience (e.g., engagement) metrics. We anticipate
that using the Visualization by Demonstration paradigm will increase
user engagement, but this remains to be formally studied.

5.2 Generalizing Visualization by Demonstration

We developed VisExemplar to show the feasibility of Visualization
by Demonstration. The current version of VisExamplar supports two
types of visualization techniques (bar chart and scatterplot) and direct
manipulation of three graphical encodings (position, size, and color).
It supports interactions which are recognized to be meaningful by pre-
vious work. We view the current version of VisExemplar as the first
step towards exploring the Visualization by Demonstration paradigm.
Multiple avenues for future work lie in improving the VisExamplar in-
terface, as well as enriching the Visualization by Demonstration idea
space. We envision expanding VisExamplar by including other visu-
alization techniques (e.g., linecharts) and graphical encodings (e.g.,
angle and volume), and working towards a generalizable interaction
framework for visualization.

Generalizing Visualization by Demonstration requires support for
providing demonstrations to imply more sophisticated analytic oper-
ations and visualization techniques. For example, how can users in-
dicate their interest in data grouping or aggregation? This requires
demonstrations that trigger analytic operations on the data, and show
the results visually. For example, users could draw regions around
specific data points to demonstrate their interest in executing a clus-
tering algorithm. Additionally, computing standard error to support
error bars in bar charts can be demonstrated by drawing the error bars
directly. Using demonstration techniques as a medium for performing
analytic operations can make complex computation more accessible to
a broader set of users.

Further, how can users indicate their interest in transforming to vi-
sualization techniques that use a different graphical encoding to en-
code data points (e.g., while data points in a scatterplot are encoded
using x−y position in a Cartesian space, parallel coordinates encode
these data points using lines across multiple parallel axis representing
data attributes). Implying this type of transition requires new strate-
gies for providing demonstrations. For example, users could connect
two data points in a scatterplot using a line to demonstrate their inter-
est in switching to a line chart. Additionally, users could draw vertical
parallel lines on a scatterplot to show their interest in switching to a
parallel coordinates. We believe that Visualization by Demonstration
can generalize to many visualization techniques, although additional
forms of interaction may be needed (e.g., sketching and visual author-
ing).

Generalizing Visualization by Demonstration should be properly
evaluated. There exist multiple methods to demonstrate specific trans-
formations. Some are likely more easy to use than others. One re-
search direction might be to observe different strategies people use to
demonstrate their interest in more sophisticated operations, extract the
common strategies used, and adapt them to expand the Visualization
by Demonstration paradigm.

5.3 Consistency of Visual Mappings
Not all the visual mappings used in a visualization technique can be
maintained throughout the exploration process. Similar to the existing
tools, when transforming from one visualization technique to another,
we are required to reset some of the encodings to their initial values.
For example, if size is mapped to a data attribute in a scatterplot and
then the user changes the technique to a bar chart, the system resets
size because it is inaccurate to have circles with different sizes where
the y axis indicates the number of data items. However, we can en-
vision creating hybrid visualization techniques and transformations in
the future that allow automated swapping of data mappings to other
valid visual encodings when switching techniques.

5.4 Recommendation Presentation and Timing
Although exploring different ways and timings of representing trans-
formations is not our main focus in this work, during the design pro-
cess of VisExemplar, we examined different ways of presenting rec-
ommended transformations.

Similar to many existing tools (e.g., [4, 12, 22, 23, 33]), we first de-
cided to show all the recommended transformations as small thumb-
nails in the Recommendation Gallery. We tried this method for Vi-
sual Representation transformations and it worked well. However, by
adding other types of transformations to the Gallery, we faced two
challenges. First, we found exploring the Gallery consisting of dif-
ferent types of transformations shown in one place confusing. Inter-
preting what the recommended transformation changes from the cur-
rent view to the recommended view was not clear. The second chal-
lenge was the large number of potential recommendations shown in
the Gallery made it less readable. We thought it might be a better idea
if we located different types of transformations in places which are
still meaningful to users and easy to understand. We tried different
places and finally decided to put the Axes transformations and View
Specification transformations on the ThinkBoard, and Data Mapping
transformations in the Detail view. One possible follow-up research
direction includes exploring methods of presenting recommendations
in visualizations and evaluating their effectiveness.

In the current version of VisExemplar, the recommended transfor-
mations will be updated in the interface whenever the recommenda-
tion table in the recommendation engine gets updated. However, one
interesting research direction includes understanding the impacts of
interruptions caused by incoming recommendations and investigating
methods for minimizing the interruption caused by incoming recom-
mendations. For example, one way could include presenting recom-
mendations upon pressing a specific button on the interface. Alterna-
tively, the system could observe the cadence of user interaction with
the system and propose recommendations at a less active time.

6 CONCLUSION

This paper introduces Visualization by Demonstration, a user interac-
tion paradigm for visual data exploration. The paradigm advocates for
mapping visual demonstrations provided by users to meaningful vi-
sual transformations and recommending them to users. Users are able
to provide demonstrations of intended changes to an existing visual-
ization, and the system computes the appropriate transformations to
accommodate the desired change as closely as possible. In order to
demonstrate the technical feasibility of this paradigm, we developed
a prototype called VisExemplar. VisExemplar allows users to explore
their data via Visualization by Demonstration. After users provide vi-
sual demonstrations, the system recommends possible transformations
based on the given demonstrations. VisExemplar computes these rec-
ommendations through a set of intent functions used to compute a best
fit from the provided visual demonstrations and resulting transforma-
tions. While this paper has taken initial steps to introduce the concept
of Visualization by Demonstration, there exist several exciting avenues
for continued research.

7 ACKNOWLEDGEMENTS

We would like to thank the reviewers and GT Visualization Lab mem-
bers for their feedback.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

SAKET ET AL.: VISUALIZATION BY DEMONSTRATION: AN INTERACTION PARADIGM FOR VISUAL DATA EXPLORATION 339

Intent Function 4 (Figure 6-(C)-4): If the user drags a data point
out of a bar in a bar chart, the system interprets it as a demonstration of
changing the visual representation to a scatterplot. After the user drags
out two or more data points, the system searches for data attributes that
will be assigned to axes of a new scatterplot (using a similar method to
the Intent Functions 1 and 2). Based on the current x and y coordinates
of the moved points, the system recommends potential x and y axes
so that the new scatterplot representations of the moved points would
be similar to the current user-defined positions. The recommendations
with previews will be shown in the Recommendation Gallery.

Intent Function 5 (Figure 6-(C)-5): Users can drag and drop any
of the bars shown in a bar chart. If the user drags the longest bar in the
bar chart to the left most side of the bar chart the system recommends
sorting the bar chart descending. If the user drags the longest bar in the
bar chart to the right most side of the bar chart the system recommends
sorting the bar chart in the ascending order.

Resizing: Users can resize data points any time during the data
exploration process. Users can adjust the size by dragging a small
handle (tiny black circle) on the perimeter of the data point.

Intent Function 6 (Figure 6-(C)-6): When a user resizes a data
point in a scatterplot, the system interprets it as the user’s interest in
encoding a data attribute to the demonstrated sizes of data points. In
order to provide enough information to the system for recommend-
ing a mapping from a data attribute to data point sizes, the user has to
resize two or more data points. The system shows recommended trans-
formations that are above a developer-defined threshold by showing a
expand icon (�) beside those attributes on the Detail View. Specifi-
cally, we first normalize the sizes of data points the user has adjusted
in a way that reflects the fact that the minimum is nonzero and that
we are seeking changes in the same direction (bigger or smaller) by
setting the default drawing value to 0.5. We calculate a scaled value
ãi ∀i ∈ S (the set of modified points) as follows:

ãi =

1
2

(
1+ ai−a0

max(a)−a0

)
if ai > a0

1
2

(
ai−min(a)
a0−min(a)

)
if ai < a0

,

where ai is the current plotted size of the i-th data point, a0 is the
default plotting size, and the max and min functions return the pre-
determined maximum and minimum drawing sizes for points in the
visualization. The system recommends attribute j∗ for size encoding
such that

j∗ = argmin j ∑
i∈S

(d̃i j − ãi)
2,

where S is the set of resized data points.

Recoloring: Users can recolor a data point by right clicking on
it and picking a color from the pop-up menu. VisExemplar currently
supports three colors: red, blue, and green (default).

Intent Function 7 (Figure 6-(C)-7): We now describe the intent
function triggered by changing the colors of data points. For coloring
interactions, we consider categorical attributes only and ignore numer-
ical attributes. We define an attribute as categorical if the number of
unique values present is fewer than ten and also fewer than half of the
number of data points. That is, attribute j is categorical if and only if

|unique(d· j)| ≤ min(10,
n
2
)

If the user changes the color of one data point, the system makes
a recommendation for each categorical attribute, suggesting applying
the same recoloring to all other points sharing the value. For example,
if the user changes the color of an AWD sedan with 6 cylinders to red,
the system recommends three options: coloring all AWD vehicles red,
coloring all sedans red, or coloring all 6-cylinder cars red.

When a user colors two or more data points, two conditions are
checked to find the appropriate mapping. The first checks for positive
correspondence between a data attribute and the assigned color. The
condition is satisfied for an attribute if all points given the same color
also have the same value for that attribute. The second condition tests

Cost

MPG

(a) (b)

Length

MPG

Cost

Figure 7: Position-changing interaction. (a) A scatterplot with MPG
as x-axis and cost as y-axis. A user moves a red data point. As a result,
the system recommends assigning length attribute to x-axis. (b) A
visual representation of data distributions for potential data attributes.

that whenever two points have different colors, they have different at-
tribute values. Given a set of indices of k modified points i1, . . . , ik, the
two conditions on attribute j are, for all pairs (k, p) : k, p ∈ i1, . . . , ik
and k �= p:

Condition I: If ck = cp, then dk j = dp j

Condition II: If ck �= cp, then dk j �= dp j

If all the user-colored data points have the same color, the system
checks every categorical data attribute to see if its attribute values
of the colored data points are the same using Condition I. The sys-
tem then recommends all data attributes that meet Condition I. For
example, suppose the user colors an AWD sedan with 6 cylinders
and a non-AWD sedan with 6 cylinders red. Since both cars are 6-
cylinder sedans, two attributes, car-body-type (which includes sedan)
and number-of-cylinders, satisfy Condition I. The system recommends
two options: coloring all sedans red or coloring all 6-cylinder cars red.

If the data points are colored with two or more colors, the system
uses both conditions to evaluate attribute mappings. The two or more
colors specify not only the mapping of color to an attribute, but the
assignment of values of that attribute to one specific color. First, Con-
dition I is applied across each subset of the re-colored points that have
been assigned the same color. This discovers the data attributes shared
by each colored group of the modified points. Second, Condition II
is applied with the attributes revealed by Condition I to find which
attributes can account for the differences across color groups. For ex-
ample, suppose the user re-colors three data points: two representing
cars with attribute values given by the tuples (AWD, sedan, 6 cylin-
ders) and (FWD, sedan, 6 cylinders) are colored red; the third, (AWD,
sedan, 4 cylinders), is colored blue. In the red group, both body-type
(e.g., sedan) and number-of-cylinders satisfy Condition I. However,
when Condition II is checked, we see that only the cylinder attribute
satisfies both conditions. The system recommends mapping the cylin-
ders attribute to color by coloring 6-cylinder cars red and 4-cylinder
cars blue. A brush icon (�) beside each of the candidate attributes on
the Detail View shows the recommendation to the user.

5 DISCUSSION AND FUTURE WORK

5.1 Interoperability with Direct Manipulation
There is an inherent tradeoff between the flexibility of Visualiza-
tion by Demonstration and the loss of formality and expressive-
ness. A given demonstration could imply multiple transformations
and multiple demonstrations might imply the same transformation. Of
course this many to many relationship between given demonstrations
and transformations raises technical challenges in translating given
demonstrations into meaningful transformations. Early on during the
process of providing demonstrations, mapping the given demonstra-
tions to possible transformations might be more ambiguous but as
users continue completing their demonstrations and providing more
evidence and training data to the system, the number of possible trans-
formations would decrease (and ideally become more accurate with re-
spect to the user’s goals). This is similar to interactive machine learn-
ing [11], in which more examples lead to more accurate decisions.
For instance, by coloring a single data point blue, there may be many
recommended transformations because the system has less accuracy

about the user intentions. However, coloring a few more data points
would increase the accuracy of the recommended transformations.

Visualization by Demonstration can be used independently or aug-
ment the interaction design of existing visualization tools. For exam-
ple, the interaction design of SpotFire [1] can be enhanced by Visu-
alization by Demonstration. In this case, expert users could create a
bar chart by specifying the data attributes for x− y axes and a visu-
alization technique from the control panel. In addition, non-expert
users could benefit from the Visualization by Demonstration approach
by providing visual demonstrations to the visualization incrementally
and letting the system compute possible transformations.

An important avenue for continued research is conducting a study to
compare Visualization by Demonstration with interaction paradigms
applied in other existing visualization tools. This requires a separate
in-depth study utilizing both qualitative and quantitative techniques
to measure the impact of Visualization by Demonstration compared
to other interaction methods, using various usability (e.g., time and
error) and user experience (e.g., engagement) metrics. We anticipate
that using the Visualization by Demonstration paradigm will increase
user engagement, but this remains to be formally studied.

5.2 Generalizing Visualization by Demonstration

We developed VisExemplar to show the feasibility of Visualization
by Demonstration. The current version of VisExamplar supports two
types of visualization techniques (bar chart and scatterplot) and direct
manipulation of three graphical encodings (position, size, and color).
It supports interactions which are recognized to be meaningful by pre-
vious work. We view the current version of VisExemplar as the first
step towards exploring the Visualization by Demonstration paradigm.
Multiple avenues for future work lie in improving the VisExamplar in-
terface, as well as enriching the Visualization by Demonstration idea
space. We envision expanding VisExamplar by including other visu-
alization techniques (e.g., linecharts) and graphical encodings (e.g.,
angle and volume), and working towards a generalizable interaction
framework for visualization.

Generalizing Visualization by Demonstration requires support for
providing demonstrations to imply more sophisticated analytic oper-
ations and visualization techniques. For example, how can users in-
dicate their interest in data grouping or aggregation? This requires
demonstrations that trigger analytic operations on the data, and show
the results visually. For example, users could draw regions around
specific data points to demonstrate their interest in executing a clus-
tering algorithm. Additionally, computing standard error to support
error bars in bar charts can be demonstrated by drawing the error bars
directly. Using demonstration techniques as a medium for performing
analytic operations can make complex computation more accessible to
a broader set of users.

Further, how can users indicate their interest in transforming to vi-
sualization techniques that use a different graphical encoding to en-
code data points (e.g., while data points in a scatterplot are encoded
using x−y position in a Cartesian space, parallel coordinates encode
these data points using lines across multiple parallel axis representing
data attributes). Implying this type of transition requires new strate-
gies for providing demonstrations. For example, users could connect
two data points in a scatterplot using a line to demonstrate their inter-
est in switching to a line chart. Additionally, users could draw vertical
parallel lines on a scatterplot to show their interest in switching to a
parallel coordinates. We believe that Visualization by Demonstration
can generalize to many visualization techniques, although additional
forms of interaction may be needed (e.g., sketching and visual author-
ing).

Generalizing Visualization by Demonstration should be properly
evaluated. There exist multiple methods to demonstrate specific trans-
formations. Some are likely more easy to use than others. One re-
search direction might be to observe different strategies people use to
demonstrate their interest in more sophisticated operations, extract the
common strategies used, and adapt them to expand the Visualization
by Demonstration paradigm.

5.3 Consistency of Visual Mappings
Not all the visual mappings used in a visualization technique can be
maintained throughout the exploration process. Similar to the existing
tools, when transforming from one visualization technique to another,
we are required to reset some of the encodings to their initial values.
For example, if size is mapped to a data attribute in a scatterplot and
then the user changes the technique to a bar chart, the system resets
size because it is inaccurate to have circles with different sizes where
the y axis indicates the number of data items. However, we can en-
vision creating hybrid visualization techniques and transformations in
the future that allow automated swapping of data mappings to other
valid visual encodings when switching techniques.

5.4 Recommendation Presentation and Timing
Although exploring different ways and timings of representing trans-
formations is not our main focus in this work, during the design pro-
cess of VisExemplar, we examined different ways of presenting rec-
ommended transformations.

Similar to many existing tools (e.g., [4, 12, 22, 23, 33]), we first de-
cided to show all the recommended transformations as small thumb-
nails in the Recommendation Gallery. We tried this method for Vi-
sual Representation transformations and it worked well. However, by
adding other types of transformations to the Gallery, we faced two
challenges. First, we found exploring the Gallery consisting of dif-
ferent types of transformations shown in one place confusing. Inter-
preting what the recommended transformation changes from the cur-
rent view to the recommended view was not clear. The second chal-
lenge was the large number of potential recommendations shown in
the Gallery made it less readable. We thought it might be a better idea
if we located different types of transformations in places which are
still meaningful to users and easy to understand. We tried different
places and finally decided to put the Axes transformations and View
Specification transformations on the ThinkBoard, and Data Mapping
transformations in the Detail view. One possible follow-up research
direction includes exploring methods of presenting recommendations
in visualizations and evaluating their effectiveness.

In the current version of VisExemplar, the recommended transfor-
mations will be updated in the interface whenever the recommenda-
tion table in the recommendation engine gets updated. However, one
interesting research direction includes understanding the impacts of
interruptions caused by incoming recommendations and investigating
methods for minimizing the interruption caused by incoming recom-
mendations. For example, one way could include presenting recom-
mendations upon pressing a specific button on the interface. Alterna-
tively, the system could observe the cadence of user interaction with
the system and propose recommendations at a less active time.

6 CONCLUSION

This paper introduces Visualization by Demonstration, a user interac-
tion paradigm for visual data exploration. The paradigm advocates for
mapping visual demonstrations provided by users to meaningful vi-
sual transformations and recommending them to users. Users are able
to provide demonstrations of intended changes to an existing visual-
ization, and the system computes the appropriate transformations to
accommodate the desired change as closely as possible. In order to
demonstrate the technical feasibility of this paradigm, we developed
a prototype called VisExemplar. VisExemplar allows users to explore
their data via Visualization by Demonstration. After users provide vi-
sual demonstrations, the system recommends possible transformations
based on the given demonstrations. VisExemplar computes these rec-
ommendations through a set of intent functions used to compute a best
fit from the provided visual demonstrations and resulting transforma-
tions. While this paper has taken initial steps to introduce the concept
of Visualization by Demonstration, there exist several exciting avenues
for continued research.

7 ACKNOWLEDGEMENTS

We would like to thank the reviewers and GT Visualization Lab mem-
bers for their feedback.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

340 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

REFERENCES

[1] C. Ahlberg. Spotfire: an information exploration environment. ACM
SIGMOD Record, 25(4):25–29, 1996.

[2] C. Andrews, A. Endert, and C. North. Space to think: large high-
resolution displays for sensemaking. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 55–64. ACM,
2010.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(12):2301–
2309, 2011.

[4] F. Bouali, A. Guettala, and G. Venturini. Vizassist: an interactive user
assistant for visual data mining. The Visual Computer, pages 1–17, 2015.

[5] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function: Learning
distance functions interactively. In Visual Analytics Science and Technol-
ogy (VAST), 2012 IEEE Conference on, pages 83–92. IEEE, 2012.

[6] W. S. Cleveland and R. McGill. Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods.
Journal of the American statistical association, 79(387):531–554, 1984.

[7] W. S. Cleveland and R. McGill. Graphical perception and graphical meth-
ods for analyzing scientific data. Science, 229(4716):828–833, 1985.

[8] A. Cypher and D. C. Halbert. Watch what I do: programming by demon-
stration. MIT press, 1993.

[9] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text
analytics. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 473–482. ACM, 2012.

[10] A. Endert, C. Han, D. Maiti, L. House, S. Leman, and C. North.
Observation-level interaction with statistical models for visual analytics.
In Visual Analytics Science and Technology (VAST), 2011 IEEE Confer-
ence on, pages 121–130. IEEE, 2011.

[11] J. A. Fails and D. R. Olsen Jr. Interactive machine learning. In Proceed-
ings of the 8th international conference on Intelligent user interfaces,
pages 39–45. ACM, 2003.

[12] D. Gotz and Z. Wen. Behavior-driven visualization recommendation. In
Proceedings of the 14th international conference on Intelligent user in-
terfaces, pages 315–324. ACM, 2009.

[13] H. V. Henderson and P. F. Velleman. Building multiple regression models
interactively. Biometrics, pages 391–411, 1981.

[14] E. Horvitz. Principles of mixed-initiative user interfaces. In Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems,
pages 159–166. ACM, 1999.

[15] S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer. Construc-
tive visualization. In Proceedings of the 2014 conference on Designing
interactive systems, pages 433–442. ACM, 2014.

[16] S. Huron, Y. Jansen, and S. Carpendale. Constructing visual representa-
tions: Investigating the use of tangible tokens. Visualization and Com-
puter Graphics, IEEE Transactions on, 20(12):2102–2111, 2014.

[17] T. Igarashi and J. F. Hughes. A suggestive interface for 3D drawing. In
Proceedings of the 14th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’01, pages 173–181, New York, NY, USA,
2001. ACM.

[18] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interac-
tive visual specification of data transformation scripts. In ACM Human
Factors in Computing Systems (CHI), 2011.

[19] B. Kondo and C. M. Collins. Dimpvis: Exploring time-varying informa-
tion visualizations by direct manipulation. Visualization and Computer
Graphics, IEEE Transactions on, 20(12):2003–2012, 2014.

[20] B. Lee, R. H. Kazi, and G. Smith. Sketchstory: Telling more engaging
stories with data through freeform sketching. Visualization and Computer
Graphics, IEEE Transactions on, 19(12):2416–2425, 2013.

[21] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user program-
ming of mashups with vegemite. In Proceedings of the 14th international
conference on Intelligent user interfaces, pages 97–106. ACM, 2009.

[22] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presen-
tation for visual analysis. Visualization and Computer Graphics, IEEE
Transactions on, 13(6):1137–1144, 2007.

[23] D. B. Perry, B. Howe, A. M. Key, and C. Aragon. Vizdeck: Streamlining
exploratory visual analytics of scientific data. 2013.

[24] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE transactions on visualization
and computer graphics, 20(12):2092–2101, 2014.

[25] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proc. EuroVis), 2014.

[26] D. Schroeder and D. F. Keefe. Visualization-by-sketching: An artist’s
interface for creating multivariate time-varying data visualizations. Visu-
alization and Computer Graphics, IEEE Transactions on, 22(1):877–885,
2016.

[27] F. M. Shipman III and C. C. Marshall. Formality considered harmful:
Experiences, emerging themes, and directions on the use of formal repre-
sentations in interactive systems. Computer Supported Cooperative Work
(CSCW), 8(4):333–352, 1999.

[28] B. Shneiderman. Dynamic queries for visual information seeking. Soft-
ware, IEEE, 11(6):70–77, 1994.

[29] SpotFire. http://www.spotfire.com, 2015.
[30] Tableau. Tableau software, http://www.tableau.com/, 2015.
[31] J. Walny, S. Carpendale, N. H. Riche, G. Venolia, and P. Fawcett. Visual

thinking in action: Visualizations as used on whiteboards. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 17(12):2508–2517,
2011.

[32] J. Walny, B. Lee, P. Johns, N. H. Riche, and S. Carpendale. Understand-
ing pen and touch interaction for data exploration on interactive white-
boards. Visualization and Computer Graphics, IEEE Transactions on,
18(12):2779–2788, 2012.

[33] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visual-
ization recommendations. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2015.

[34] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. Toward a deeper under-
standing of the role of interaction in information visualization. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 13(6):1224–1231,
2007.

[35] M. M. Zloof. Query by example. In Proceedings of the May 19-22, 1975,
national computer conference and exposition, pages 431–438. ACM,
1975.

Authorized licensed use limited to: DePaul University. Downloaded on June 02,2021 at 12:30:33 UTC from IEEE Xplore. Restrictions apply.

