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ABSTRACT

Teaching files are widely used by radiologists in the diagnostic process and for student 
education. Most hospitals maintain an active collection of teaching files for internal 
purposes, but many teaching files are also publicly available online, some linked to 
secondary sources. However, public sources offer very limited (and ad-hoc) search 
capabilities. Based on the previous work on data integration and text-based search, 
the authors extended their Integrated Radiology Image Search (IRIS 1.1) engine with 
a new medical ontology, SNOMED CT, and the ICD10 dictionary. IRIS 1.1 integrates 
public data sources and applies query expansion with exact and partial matches to 
find relevant teaching files. Using a set of 28 representative queries from multiple 
sources, the search engine finds more relevant teaching cases versus other publicly 
available search engines.
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1. INTRODUCTION

A radiology teaching file repository is a collection of important cases for teaching 
and clinical follow-up, and references to better understand the classification of 
diseases (Dashevsky et al., 2015). All teaching files share a similar general structure 
but significant variations exist, even within the same data source. Teaching files may 
include information such as patient history, findings, diagnosis, differential diagnosis, 
and images related to clinical reports. Teaching files can be categorized into three 
types: (1) personal teaching files that are meant for the general use of the teaching 
file owner, (2) shared in-house teaching files in which the owner makes the teaching 
file content available for viewing within their institution, and (3) public teaching files 
built on a shared model but with more comprehensive content that may undergo a 
formal review before publication (De-Arteaga et al., 2015).

A recent national survey assessing the role and desired features of radiology 
teaching files found that, among the 396 respondents from 115 institutions, 89% use 
some form of teaching file from which 76% keep a personal teaching file containing 
a variety of media and 67% use a shared in-house teaching file, while 83 institutions 
had paid subscriptions to a public teaching file repository (Dashevsky et al., 2015). 
Public teaching file solutions have become increasingly popular, providing users with 
instant access to thousands of cases (although of inconsistent data) (Seitz et al., 2003), 
sometimes for a fee. While all of these public and commercial solutions are available, 
most do not permit users to (1) easily submit personal cases to their libraries, (2) 
perform efficient querying, categorization and search for particular cases, (3) simulate 
basic PACS (picture archiving and communication system) functionality, or (4) enable 
self-directed and assessed learning – all important teaching file repository features as 
identified by at least 50% of the survey respondents (Dashevsky et al., 2015).

Therefore, as the first step to organize and extract medical knowledge from large 
teaching file repositories, we have 1) developed a database schema for teaching file 
integration and a framework for a radiology image search engine and 2) evaluated the 
framework on the Radiology Society of North America Medical Imaging Resource 
Community (RSNA MIRC) (2018) and MyPacs (Group, 2018) repositories indexed 
using the Radiology Lexicon (RadLex) (RSNA, 2018). We normalized all data sources 
and augmented the integration process with data cleaning and validation to account 
for different format representations. Many data sources include noisy entries – for 
example, different teaching files, even though stored in the same data repository, do 
not use the same text category names. For the teaching files that did not come indexed 
by RadLex (as is done for MIRC), we annotated all imported data with RadLex terms.

In this paper, we propose an extension of the data repository indexing by integrating 
Unified Medical Language System (UMLS) Systematized Nomenclature of Medicine 
– Clinical Terms (SNOMED CT) (2017) using UMLS Metamorphosis (SNOMED, 
2017) and show that this extension improves search results, particularly for queries 
that originally retrieved few teaching files. To evaluate and quantify search results, we 
propose a new evaluation criterion in consultation with medical experts that measures 
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the accuracy of search results based on the term appearance in different categories of 
teaching file text. Based on domain knowledge and surveys, we found that findings 
and diagnosis are the most relevant search categories in teaching files. Our original 
search engine is referred to as Integrated Radiology Image Search (IRIS) (Deshpande, 
2017) IRIS 1.0, and the proposed improvement as IRIS 1.1.

The rest of the paper is organized as follows. In Section 2 we present related 
relevant data sources and other research that motivated our work. In Section 3 we 
present our database schema, architecture of IRIS 1.1, teaching file repositories we 
integrated, RadLex and SNOMED CT ontologies, Natural Language Processing 
(NLP) techniques we applied to perform the smart search, and IRIS 1.1 evaluation 
metric. In Section 4 we present a comparative analysis of our proposed work (IRIS 
1.1) to the previous system (IRIS 1.0), the MIRC and MyPacs search engines as well 
as customized Google searches. In Section 5 we summarize the proposed approach 
and outline new avenues for expanding this work.

2. RELATED WORK

In this section we present a literature review of papers that discuss the need for data 
integration of radiological sources. We also summarize existing radiological sources 
along with their search engine capabilities, advantages, and limitations. While our 
current implementation integrates MIRC and MyPacs data sources, we intend to 
integrate the data sources described here into our system.

Several studies have highlighted the need to integrate clinical reports and images 
into an integrated database with advanced search capabilities. Gutmark et al. (2007) 
argued for building a system that reduces errors in radiological images’ interpretation 
using teaching file databases. Easy-to-use computer-based teaching files are useful 
for training physicians and as a reference tool for experienced physicians with the 
long-term goal of improving diagnostic accuracy. Talanow et al. (2009) discussed 
how radiological images are critical for diagnosis, why teaching file are helpful in 
radiological diagnosis, and how they developed internet-based radiology teaching 
file systems. Dos-Santos et al. (2012) discussed how the availability of a large and 
diverse set of clinical cases drives the need for the integration of profiles published 
by Integrating the Healthcare Enterprise (IHE). Margolies et al. (2016) found that a 
repository of pathology-proven cases in a dashboard has the potential to enhance and 
encourage the formation of accurate teaching files, as well as educational publications 
in the form of case series or “case of the day” submissions. Hwang et al. (2016) 
discussed how the use of Positron Emission Tomography Computed Tomography 
(PET-CT) increased the need to retrieve relevant medical images that can assist in 
diagnosis. Hwang et al. designed a database using annotation and image markup as 
well as an image search engine. This paper further motivated our research work – to 
design a logical schema for a database with stored image features and to develop a 
search engine that supports both text and image-based search. Furthermore, Kansagra 
et al. (2016) presented the idea of having a global database that integrates multiple 
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data sources (such as clinical data, patient history, physical exam findings, laboratory 
data, or imaging data) for more precise and accurate diagnosis.

In the rest of this section, we present a list of currently or previously available data 
repositories and medical search engines along with their advantages and limitations 
(summarized in Table 1). We marked some entries with “*,” indicating that these 
search engines provide links to teaching file repositories from external data sources. 
For example, Google provides links to MyPacs or MIRC teaching files but does not 
show results in terms of teaching files.

Radiology Society of North America (RSNA) Medical Imaging Resource 
Community (MIRC) (2018) is a large repository (over 2,000 public teaching files with 
more than 12,000 images) with teaching files including patient history, diagnosis, 
differential diagnosis, findings, discussion, and external references to journal articles. 
Radiological terms are highlighted and linked to RadLex terms as described in section 
3.1. MIRC links to the RadioGraphics and Radiology journals, which can provide 
additional data for medical knowledge extraction. Although a rich source of medical 
knowledge, the MIRC repository search engine does not support specialized search 
fields (such as anatomy, age, and imaging modality), does not recognize negation, and 
does not have the ability to perform query expansion through synonyms.

MyPacs data repository (with 17,000 publicly available teaching files) has over 
33,000 cases in total. Using the search engine of MyPACS, users can search records 
based on anatomy, pathology, image modality, age, gender, etc. The data repository 
also links to MedScape (LLC, 2017) for additional supplemental information; however, 
the built-in search engine does not support searching through synonyms and negation, 
and, similar to the MIRC search engine, is not able to perform image-based search. 
Although beyond the scope of this paper, our database schema and engine design 
include facilities to support image-based search.

CTisus (Hospital, 2017) is a large repository of radiological images, quizzes, and 
CT protocols. Although there are 237,000 images available along with video files, 
the repository does not contain case diagnosis, patient medical history or differential 
diagnosis, and there is no support for image-based searches. Medscape (LLC, 2017) 
is the latest medical news and information source about drugs and diseases available 
for radiology students and physicians. Even though Medscape is rich in medical data, 
there is no search engine available nor do any teaching files contain images, differential 
diagnosis or other valuable case information.

Radiopaedia (Jones, 2017) is an open-edit radiology resource with 25,000 cases 
and 10,000 articles. As with all the other data sources, no image-based search is 
provided. Gamuts (Reeder, 2017) contains a comprehensive list of image differential 
diagnoses that are linked to symptoms, disease names, and causes. Although images 
are linked to the GoldMiner Radiology search engine, Gamuts does not offer a text-
based search as it has no search engine. The Casimage database within the IRMA 
framework (Thies, et al., 2004) integrates multimedia teaching and reference data into 
the PACS environment. The database includes only 8,000 images and it does not feature 
concept-based image retrieval. ImageCLEFmed Teaching Files (Muller et al., 2010) 
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is a collection of domain-specific photographs for the medical field, which was used 
in medical ad hoc retrieval tasks from 2004 to 2007. This medical archive comprises 
a total of 66,000 images and several composite medical sub-collections provided by 
independent medical institutions and hospitals.

Radiology Teacher (Talanow, 2009) is a web-based teaching file development and 
distribution program, which allows authors to create, edit, and delete cases and images 
with descriptions and annotations. A quiz mechanism and an image annotation feature 
integrate an interface to the Medical Illustrator software are also provided. Presently, 
the Radiology Teacher system contains less than 350 cases.

RADTF (Do et al., 2010) is a teaching file solution, which is compatible with 
RadLex. Differential diagnosis and quiz modes are available. RADTF uses RadLex 
anatomy concept terms and provides NLP features to process radiologic reports (Do et 
al., 2010), including stemming, ranking of results based on detected negation, hedge, 
and uncertainty expressions. Although RADTF has been described as open-source 
(Do et al., 2010), others have concluded that RADTF is not publically available (De-
Artega et al., 2015) and therefore, we cannot evaluate the features it supports.

EURORAD (European Society of Radiology) (Neutorgasse, 2017) is a peer-
reviewed educational tool based on teaching cases. It contains 6,000 teaching files 
with clinical history, image findings, discussion, final diagnosis and differential 
diagnosis. EURORAD currently supports three different languages (English, Spanish, 
and French). Users can search on anatomical body structure but, similar to other 
teaching file sources, there is no support for negations, synonyms, or image-based 
search. Another radiological teaching file system that can be integrated into a PACS 
environment is RadPix (Weadock, 2017). Complete radiological teaching files can 
be created by adding text, annotations and images. The current public user interface 
only has 11 teaching cases.

In addition to the work described so far, there were several efforts made to allow 
image search to use the text associated with the images through captions or text 
embedded in the images. Some of these systems proposed for the medical domain 
are summarized below.

The Biomedical Image Metadata Manager (BIMM) (Korenblum et al., 2011) 
system provides retrieval of similar images using semantic features of image metadata. 
Based on the imaging observation, 2D regions of interest are stored as metadata, and 
the system offers content-based image retrieval capabilities although this could not 
be tested as it is no longer available in the public domain (Korenblum et al., 2011).

Khresmoi for Everyone (Khresmoi, 2017) is a medical informatics and retrieval 
system that provides an access system for online biomedical information and 
documents. The result of a search is a web link to a discussion forum about diseases 
and quizzes. However, there is no unified solution with clinical reports with categories, 
such as patient history or differential diagnosis. Furthermore, the search capabilities 
are limited; for example, it does not support synonym- and negation-based search.

GoldMiner (Society, 2017) helps users search images and articles from peer-
reviewed biomedical journals. It uses the National Library of Medicine to discover 
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medical concepts in figure captions with the final goal of retrieving relevant images. 
GoldMiner recognizes abbreviations, synonyms, and types of diseases but search 
results depend on the explicit presence of specific words in figure’s captions.

Yottalook (Solutions, 2017) is a radiologist-targeted search engine powered 
by Google Custom Search that searches a variety of sources such as radiopaedia.
org, American Journal of Radiology, University of Michigan Medical School, and 
MyPacs. It provides users with the ability to choose the category of search (e.g., CT, 
ultrasound). Although Yottalook searches multiple sources it does not integrate them: 
users searching a category (e.g., X-ray) are then redirected to the original source in 
its specific format (e.g., an external webpage or a Power-Point file).

Open-i (NIH, 2017) (Open Access Biomedical Image Search Engine) is a service 
of the National Library of Medicine that enables search and retrieval of abstracts and 
images (including charts, graphs, clinical images, etc.) from the open source literature 
and biomedical image collections. Searching may be done using text queries as well 
as images. Open-i provides access to over 3.7 million images from about 1.2 million 
PubMed Central® articles; 7,000 chest x-rays with 3,000 radiology reports; 6,000 
images from NLM History of Medicine collection; and 2,000 orthopedic illustrations. 
However, these articles are not teaching files and therefore do not include important 
categories such as patient history, diagnosis or findings.

3. MATERIALS AND METHODS
3.1. Creation of Logical Schema, Data Integration, and Indexing
We designed a generalized database (used to combine heterogeneous data sources) 
logical schema (Figure 1) and populated the database from public teaching file 
repositories. The base entry in the center of the schema is a combination of teaching 
file record and an image entry since teaching files are naturally built around visual 
examples (e.g., MRI, digital radiograph images). Each entry is then annotated with a 
variety of related information, both from the data source (e.g., differential diagnosis, 
patient history and discussion fields of the teaching file) and derived data (e.g., image 
properties, indices or image feature extracts). Each teaching file entry is further linked 
with references and diagnosis information as well as patient data, physician data and 
a pathology report (when available).

To implement the database schema, we considered many relational databases 
including MySQL, SQL Server, Oracle and PostgreSQL. Based on the radiology 
teaching files’ types of data, we determined that the PostgreSQL database is better 
suited for heterogeneous database connectivity, user defined functions (UDFs), support 
for low-level image features, and data integration. After cleaning and loading data 
into a PostgreSQL database, based on the logical schema we developed, we enforced 
Health Insurance Portability and Accountability Act (HIPAA) constraints by censoring 
patients’ protected health information. We searched for matching patterns such as 
date of birth, bank account number, or social security number to identify patient 
personal information and blanked it out in teaching files within our database. In some 
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cases, the matching pattern approach has the limitation of not differentiating between 
personal information (e.g., patient date of birth) and non-personal information (e.g., 
date of publication of a teaching case); we currently eliminate all dates even if they 
are not part of patient personal records. In our next implementation, we plan to use 
the HIPAA Security Rule Toolkit by NIST (NIST HIPAA, 2017). The NIST HIPAA 
Security Rule Toolkit Application is intended to help organizations better understand 
the requirements of the HIPAA security rules, implement those requirements, and 
assess those implementations in their operational environment. Furthermore, we plan 
to detect potential HIPPA compliance violations not only in text, but also in images 
associated with the teaching files by modeling private data stamped or written within 
the image.

We initially integrated RSNA MIRC data source into IRIS 1.0. After the MIRC 
dataset integration, we added the content from MyPacs.net data repository. When 
querying large bodies of unstructured text (e.g., teaching file patient history and 
discussion categories), indexing is necessary to optimize query response time and 
to support custom analysis. Text indexing is particularly effective when applied to 
frequently used words in data repositories and guided by medical ontologies. An 
ontology is a way of representing the terms and their relationships in a domain; it 

Table 1. A comparative study of available data sources and search engines NLP capabilities

Search Engine Keyword 
Search

Synonyms RBT SEC RB Publicly 
Available

TF

RadTF ✓ ✓ ✓ X X X X

GoldMiner ✓ X X ✓ * ✓ X

Yottalook ✓ ✓ X ✓ * ✓ X

Google ✓ X X ✓ ✓ ✓ X

MIRC ✓ X X X X ✓ ✓

MyPacs ✓ X X X X ✓ ✓

Gamuts X X X X X ✓ X

CTisus ✓ X X ✓ X ✓ X

Casimage X X X X X X X

RadICS X X X X X X X

BIMM ✓ X X X X X X

Radiology Teacher ✓ X X X X ✓ X

Medscape ✓ X X ✓ X ✓ X

ImageCLEFmed X X X X X X X

Khresmoi ✓ ✓ X X X ✓ X

Openi ✓ ✓ X ✓ ✓ ✓ X

EURORAD ✓ X X X X ✓ ✓

Abbreviations: Relationships between terms (RBT): Hierarchical relation between terms – is a/has a, relevance feedback (RB): Based on 
results and feedback from user, retrieve relevant results, Spelling Error Correction (SEC): Prompt user with correct spelling, Teaching Files (TF) 
– data source in terms of categories: history, findings, diagnosis, and discussion.



International Journal of Knowledge Discovery in Bioinformatics
Volume 8 • Issue 2 • July-December 2018

25

gives the description of term concepts and the relations that connect them. Our current 
indexing implementation integrates two popular ontologies, RadLex and SNOMED CT.

RadLex (RSNA, 2017) is an ontological system that provides a comprehensive 
lexicon vocabulary for radiologists. A radiology-specific lexicon was needed to make 
more efficient use of the growing amount of electronic information in the radiology 
environment, in particular in the creation of electronic teaching materials, and to 
more accurately search reports and perform data-mining. The RadLex browser was 
developed by the RSNA and links to articles from journals including the British 
Institute of Radiology and American Journal of Neuroradiology.

The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) (2017) 
ontology provides a standardized, multilingual vocabulary of clinical terminology that 
is used by physicians and other healthcare providers for the electronic exchange of 
clinical health information. The SNOMED CT ontology follows the National Library 
of Medicine (NLM) Unified Medical Language System (UMLS) format (SNOMED, 
2017); it has a hierarchical structure and includes clinical findings, anatomy, test 
findings, and morphological connections. This ontology covers more than 311,000 
terms with preferred name, synonyms, definition, and semantic meaning.

We used UMLS (2017) Metathesaurus to build vocabulary dictionaries using 
ontologies such as SNOMED CT and International Classification of Diseases (ICD). 
The UMLS includes the Metathesaurus, the Semantic Network, and the specialist 
Lexicon and Lexical Tools. The Metathesaurus is a large biomedical thesaurus that 
is organized by concept, or meaning, and links similar names for the same concept 
from nearly 200 different vocabularies. The Metathesaurus also identifies useful 

Figure 1. Logical schema used in IRIS 1.1
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relationships between concepts and defines the meanings (using the definition of 
terms), concept names, and relationships from each vocabulary.

The ICD is a widely recognized international system for recording diagnoses with 
standardized codes. It is developed, monitored, and copyrighted by the World Health 
Organization (WHO). We have expanded our medical dictionary by building a ICD10 
(10th revision) (2017) dictionary. We have used UMLS SNOMED CT, which provides 
us with concept ids that are mapped to the ICD10 dictionary; this coding standard can 
be used to analyze the text by disease name, for example, “Neoplasm” corresponds to 
the ICD10 code C00-D49. ICD10 codes can enrich search vocabulary because they 
group together diseases, procedures and entity relationship information into categories.

Figure 2 summarizes the IRIS 1.1 architecture: the two data sources (MIRC and 
MyPACS), the RadLex lexicon and SNOMED CT ontology (which integrated ICD10 
standards through UMLS), the NLP modules, and the display of the query results 
including text categories and images associated with the teaching file. The IRIS 1.1 
evaluation module stores user’s feedback in an accuracy measure table that includes 
user feedback ranking of the search results.

To keep IRIS 1.1 content up-to-date, we intend to update the database bi-monthly 
by looking at the “Date of Modification” attribute of each teaching file; if the data 
repository is more recent, IRIS 1.1 will update the corresponding stored teaching file 
and all of its associated indexes. Similarly, IRIS 1.1 content will be updated based on 
any changes in the SNOMED CT and RadLex ontologies. IRIS 1.1 expanded vocabulary 
includes a large number of defined terms (300,000), further improving our search 
results from previous work. For example, Angiosarcoma is a term which belongs to 
one type of disease; using our previous dictionary (in IRIS 1.0), we were not able 
to find related results. Using SNOMED CT, an IRIS 1.1 search for “Angiosarcoma” 
was considered along with synonyms such as “malignant Hemangioendothelioma,” 
“hemangio-sarcoma,” “hemangio-endothelial sarcoma,” and “haemangiosarcoma”; 
as a result, IRIS 1.1 found 30 teaching cases related to “angiosarcoma” which were 
missing from the IRIS 1.0 search. This IRIS 1.1 improvement is particularly significant 
in minority search cases (i.e., very few matches) which are most sensitive to missing 
search results.

3.2. Smart Search Through Synonyms and Negation Interpretation
3.2.1. Synonym Expansion
Rather than limiting searches to an exact match between the query and the data in 
the integrated database, our search engine performs automatic query expansion, 
augmenting the search with term synonyms found using medical ontologies. For 
example, if a user searches for “paranephric,” IRIS 1.1 will expand the query, 
augmenting the search with synonymous terms such as “adrenal gland,” “glandula 
suprarenalis,” “nebenniere”.
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3.2.2. Negation
We currently handle negation by expanding the search from exact matches to queries 
that contain synonyms for that negation; for example, a typical search for “no X” 
is expanded with “missing X,” “lacking X,” “absent X,” and “without X.” We also 
substitute negation expressions with antonyms: for example, query such as “no 
abnormal renin secretion” will be substituted with “normal renin secretion”.

We surveyed Clinical Text Analysis Knowledge Extraction Terms (CTAKES) 
(Apache, 2017), a well-known Natural Language Processing (NLP) tool. CTAKES 
can be used for extraction of information from electronic medical record clinical free-
text by identifying the clinical entities, such as diagnosis, procedure, diseases, and 
anatomical structures. Each entity has mapping code context and related information 
about that entity. CTAKES with negEx library (Apache, 2017) can identify negation 
in search query terms. However, this tool does not assist with replacing negation with 
antonyms and therefore we implemented our own algorithm to interpret negation in 
search terms.

Currently, we are using the nltk library to pre-process search queries, apply 
stemming, and remove stop words. We removed negation stop words from the standard 
stop word list (e.g., with, without, not, between, below) to keep them in our search, 
because these search terms are medically relevant. IRIS 1.1 identifies negation terms, 
finds concepts associated with each term, and introduces antonyms for negated terms, 
implemented through our own algorithm and an integrated antonym dictionary. 
For example, for “no cardiomegaly” IRIS 1.1 will search for cases with “normal 

Figure 2. IRIS 1.1 architecture
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heart,” “no enlarged heart,” and “no cardiomegaly”. Our results show that by adding 
antonyms based on ontology’ definitions to recognize negation and handling negation 
queries, the recall for the search is improved. For example, Table 5 shows that for 
“no cardiomegaly” query, there are seven relevant retrieved teaching files without 
the use of antonyms. When using the antonym for “cardiomegaly” (“normal structure 
of heart” based on the SNOMED CT ontology definitions), there are eleven relevant 
teaching files retrieved. Since negation, just as any other NL search query construct, 
is inherently ambiguous (Korenblum et al., 2011) – the interpretation of the negation, 
in particular of the antonym, can be ambiguous as well. To reduce this ambiguity, as 
part of our future work we will implement a context-aware search feature to select an 
appropriate meaning based on context.

Figure 3 shows the flow of IRIS 1.1 with query expansion: once user inputs a 
query, IRIS 1.1 will apply basic stemming and pass the query to the next module. 
Next, a negation module will identify if negation is present; if there is negation IRIS 
1.1 will search for antonyms in the medical dictionary, otherwise IRIS 1.1 will search 
for term synonyms. Next, the synonym/negation module will look for synonym/
antonym options for the search query, using integrated medical ontologies (RadLex 
and SNOMED CT). If synonyms or antonyms are present, IRIS 1.1 performs query 
expansion and forwards the results to the search module. Based on both original and 
expanded query terms, IRIS 1.1 retrieves and displays teaching files images along 
with the associated text. In Figure 3, we illustrated the synonym substitution process 
using “Angiosarcoma” query term.

Figure 3. IRIS 1.1 Search Flow: IRIS 1.1 identifies that there is no negation term in query search term “Angiosarcoma” and 
returns teaching cases with “Angiosarcoma” along with teaching files that contain term synonyms such as “Malignant 
Hemangioendothelioma” and “Hemangio-sarcoma”
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3.3. Search Methodology
We extended our previous study by improving search results through query expansion 
and by considering partial matches and search term frequency in target text. In our 
evaluation, we used queries received from our radiologist collaborators at a major 
medical university and from a literature survey. When medically relevant phrases do 
not generate exact match results, our search engine splits the search text and looks 
for individual words from the query. Partial text matching is likely to produce less 
relevant results, but is nevertheless greatly preferable to having no results. IRIS 1.1 
ranks and displays final search results based on the frequency of query term occurrence 
in found teaching files. We use the date of modification in teaching files to break ties 
in relevance ranking; the most recent teaching file will get a higher rank.

3.4. User Study for IRIS 1.1 Evaluation
In order to further validate the IRIS 1.1 search, we designed a user study to create 
reference truth for quantifying search result accuracy. Four human annotators provided 
feedback on search results by annotating the retrieved teaching files as irrelevant, 
relevant, more relevant, most relevant, or best result (as summarized in Table 2).

Original IRIS 1.0 results were tested based on Relevant, Not relevant, or Not sure 
ratings, which were sufficient as IRIS 1.0 results were not ranked based on search 
relevance. We selected a scale from 0 to 4 to rate the relevance of the results based on 
previous work on evaluating search engines and gathering reference truth for diagnostics 
interpretation in the medical domain. In particular, a study by Kushniruk et al. (2002) 
presented a comparative evaluation of an experimental automated text summarization 
system and three conventional search engines – Google, Yahoo and About.com, and 
showed that, even when a rating system based on ratings from 1 to 10 was used, only 
a few ratings were used. Furthermore, in another study by Armato et al. (2011), when 
asked to interpret the level of malignancy for lung nodules, the ratings used by the NIH/
NCI Lung Image Database Consortium (LIDC) were on a scale from 1 to 5 (1 = “most 
likely benign,” 2 = “somehow benign,” 3 = “indeterminate,” 4 = “somehow malignant,” 
and 5 = “most likely malignant”), showing the need for including different levels of 
uncertainty in the ratings. Since there is an inherent uncertainty when evaluating the 
relevance and ranking retrieval results, our proposed evaluation metric incorporates 
this uncertainty by choosing the scale of 0= “irrelevant” to 4= “best result.” In IRIS 
1.1, we extend our search module and evaluate the search relevance with the help of 
four computing experts with experience in medical imaging retrieval (but without 
medical training). According to surveyed medical domain experts, when a query 
term appears in findings or diagnosis category, a teaching file is more relevant to the 
search than the teaching file with a query match in the discussion category. Experts 
also provided exemplar results for sample queries, which were used as the baseline for 
the evaluation of our results. IRIS 1.1 search result evaluation scores are summarized 
in Table 7. Evaluators were asked to mark the returned teaching files as irrelevant, 
relevant, more relevant, most relevant, or best result based on a query term, synonym 
or the definition of term, and which (term/synonyms) appear in any category text. If 
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the query term was not in any category of the teaching file, evaluators were asked to 
check for synonyms of the term – including both the synonyms and the definition of 
terms based on the integrated medical ontologies. For evaluation we used a subset of 
28 queries, as explained in Section 4.4. We focused on 5 queries (ACL Tear, Bronchus 
intermedius, Mega cistern magna, Angiosarcoma, and No Angiosarcoma) for a more 
detailed evaluation. We chose queries that return few results because evaluating the 
relevance of dozens or more results is harder (for the evaluators) to quantify. All chosen 
queries resulted in even fewer teaching files in the original IRIS 1.0 search, further 
emphasizing the benefit of integrating an additional ontology. We provided detailed 
documentation for the evaluators including relevant synonyms/antonyms, parent term 
information, term concept, and definitions of query terms drawn from ontologies.

4. RESULTS

We compared the built-in search engines that are associated with MIRC and MyPacs, 
Google search engine, and IRIS 1.1 search engine based on six queries formulated by 
medical experts at a major medical university and twenty-two sample queries from 
related work by De-Arteaga et al. (2015). As Google does not offer integrated search 
for teaching file repositories, we performed custom searches (e.g., Google search for 
“renal site: www.mypacs.net” to find content related to “renal” in MyPacs.net teaching 
file repository). This search was chosen because a regular Google search returns a 
wide variety of irrelevant (for our purposes) results such as PowerPoint presentations, 
videos, and PDF documents mixed in with the teaching files. Table 3 summarizes 
the significant differences between IRIS 1.0 and IRIS 1.1. As discussed above, the 
integration of SNOMED CT ontology improved the search results.

4.1. Comparison Results Between IRIS 1.1 With and 
Without SNOMED CT Integration on MIRC
Our current search engine results are shown in Table 4. The results show that out of 
28 search queries, IRIS 1.1 search engine improved results for 11 queries using query 
expansion with exact match; 5 more queries were improved by using partial query 
match. For example, for exact match if we consider the example of “tracheal dilation,” 
IRIS 1.1 will search for “tracheal dilation” and also search for “Bronchoscopy with 
tracheal dilation,” returning 69 and 159 additional teaching files for MIRC (2k) and 
MyPacs (17k) datasets respectively.

IRIS 1.0 search retrieved 59 cases while IRIS 1.1 retrieved 63 cases, as it also 
searched for “enlargement of heart” and “enlarged heart” which are synonymous with 
“cardiomegaly”. Using the SNOMED CT ontology, IRIS 1.1 engine also searched for 
“cardiac dilation” and “congenital cardiomegaly,” “cor bovinum,” and “megalocardia”. 
The exact search count depends on the dataset, but our enhanced dictionary enabled 
IRIS 1.1 to identify new teaching files that were closely related to the search terms. 
For example, the “cardiomegaly” search matched a teaching file with the title “Ebstein 
Anomaly” –where “cardiomegaly” does not appear in any of the categories. In this 
teaching file only synonyms of “cardiomeglay” are used, such as “cardiac enlargement” 



International Journal of Knowledge Discovery in Bioinformatics
Volume 8 • Issue 2 • July-December 2018

31

which appears once in findings, “enlarged heart” in differential diagnosis, and “cardiac 
enlargement” in the discussion category. This example shows how IRIS 1.1 searches 
were improved through the integration of medical ontologies and synonym expansion.

4.2. Comparison of IRIS 1.1 With Other Search Engines
Our in-depth evaluation of IRIS 1.1 engine compares query results, using 6 queries 
with the ones produced by the MIRC and MyPacs search engines as well as those 
produced by the Google search.

We chose 6 queries (related to diagnosis) from different sources including (De-
Artega et al., 2015) (queries are summarized in Table 5) and added a negation term to 
those queries to measure how our search engine and other engines handle negation-
based search. The goal in choosing these 6 queries was to design a workload that is 
easy to evaluate by non-medical experts. For example, without the use of negation in 
the search, results should be related to abnormal structure of heart, enlargement of 
heart, and cardiac enlargement. With negation-based search, e.g. “no cardiomegaly,” 
results should be related to normal structure of heart, no symptoms of heart failure, 
and no enlargement of heart.

We used “cardiomegaly” and “no cardiomegaly” from Table 4 for a detailed 
illustration of IRIS 1.1 in comparison with other search engines (shown in Figure 4). 
Query search results were significantly improved through applying synonyms and 
negation interpretation when compared with the other search engines. For example, 

Table 2. IRIS 1.1 evaluation metric

Relevance Score Score Term Definition

0 Irrelevant Not relevant

1 Relevant The term/synonyms appear in any category

2 More relevant The term/synonyms appear in discussion category

3 Most relevant The term/synonyms appear in differential diagnosis or history category

4 Best result The term/synonyms appear in title, findings, or diagnosis category

Table 3. Comparison between IRIS 1.0 and IRIS 1.1

Categories IRIS 1.0 IRIS 1.1

Ontology RadLex ontology RadLex and SNOMED CT ontologies

Type of search An exact match for query 
keywords/synonyms

Both exact matches and partial matches for query 
keywords/synonyms

Relevance rank No Relevance rank based on keywords/synonyms appearance 
in teaching file text categories

# of queries 10 22

Evaluation metric 
scale

1-3 (relevant/not relevant/
not sure)

0-4 (irrelevant/ relevant/more relevant/most relevant/ best)
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Table 4. A comparative study of IRIS 1.1 search with previous IRIS 1.0 search on MIRC (2k) and MyPacs (17k) dataset 
with results improved (highlighted in bold) through the use of (4A) enhanced synonym dictionary and (4B) partial 
match for MIRC dataset queries and search term “Double duct sign” MyPacs (17k); (4C) shows no improvement in 
results

A. Query 
(Enhanced Synonym 

Dictionary)

IRIS 1.1 
MIRC (2k)

IRIS 1.0 
MIRC (2k)

IRIS 1.1 MyPacs 
(17k)

IRIS 1.0 MyPacs 
(17k)

Tracheal dilation 200 131 786 627

Cardiomegaly 63 59 106 99

Bronchus intermedius 3 1 2 2

Chiari 38 19 154 134

Angiosarcoma 30 1 96 26

Cystitis cystica 3 0 2 0

Cystitis 10 7 96 95

Cystitis glandularis 5 2 2 0

Innominate vein 39 39 95 68

Innominate artery 238 238 866 855

Varicocele 4 2 28 24

B. Query
(Partial Match)

IRIS 1.1
MIRC (2k)

IRIS 1.0
MIRC (2k)

IRIS 1.1
MyPacs (17k)

IRIS 1.0
MyPacs (17k)

Baastrup disease 868 0 1 1

Limbus vertebra 243 0 5 5

Thornwaldt cyst 577 0 6 6

Splenic hemangioma 89 0 2 2

Double duct sign 1003 0 4355 0

C. Query
(No Improvement)

IRIS 1.1
MIRC (2k)

IRIS 1.0
MIRC (2k)

IRIS 1.1
MyPacs (17k)

IRIS 1.0
MyPacs (17k)

Irregularly shaped 11 11 20 20

Acl tear 9 9 145 145

Study 117 117 776 776

Appendicitis 40 40 176 176

ACL graft tear 7 7 85 85

Hepatic adenoma 74 74 360 360

Annular pancreas 14 14 36 36

Perthe 20 20 63 63

Mega cisterna magna 3 3 9 9

Vertebra 243 243 753 753

Toxic 48 48 165 165

Buford complex 43 43 178 178
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while the built-in search engines for MIRC and MyPacs retrieved the same results 
for “cardiomegaly” and “no cardiomegaly” (effectively ignoring negation) showing 
56 teaching files and 110 teaching files respectively, our search engine differentiated 
between these two searches by recognizing negation and returning different answers 
in the negation-based query.

For the MyPacs data repository, IRIS 1.1 retrieved 106 cases that were a subset 
of 110 MyPacs results; note that the MyPacs search has access to all 33k teaching 
files versus about 17k teaching files that are freely accessible (without fees) that were 
included in IRIS 1.1 search (i.e., we integrated roughly half of the MyPacs teaching 
files). We also used Google site search as one of the alternatives which found 21 and 
72 teaching files for MIRC and MyPacs, respectively.

Figure 4a summarizes the comparative performance of different searches with 
“cardiomegaly”. IRIS 1.1 has 50 results that overlap with MIRC results, 106 results 
that overlap with MyPacs results, and 81 overlapping results with the Google search 
for the same query. There is an overlap of 21 cases between MIRC and Google and 
81 cases between MyPacs and Google search. In general, for a simple single-term 
search query, our results are similar to other tested search engines, with the notable 
advantage of being returned through a single integrated search. Our next search in 
Figure 4b summarizes evaluation of negation showing results for “no cardiomegaly”. 
Surprisingly, no search engine of those compared here applies negation to the search. 

Table 5. Examples of queries based on our own queries and De-Arteaga (2011) (improvements in number of results 
highlighted in bold, DS: an IRIS integrated dataset)

Query IRIS 1.1 
(MIRC DS 

2k)

MIRC 
(2k)

IRIS 1.1 
(MyPacs DS 

17 k)

MyPacs 
(33k)

Google 
Site: MIRC

Google 
Site: MyPacs

Cardiomegaly 63 56 106 110 21 64

No 
Cardiomegaly

11 56 72 110 7 7

ACL Tear 9 3 71 96 11 102

No ACL Tear 0 3 14 96 0 95

Appendicitis 40 42 179 162 10 99

No 
Appendicitis

3 42 1 162 4 100

Hepatic 
adenoma

74 8 15 20 0 14

No Hepatic 
adenoma

2 7 8 20 0 20

Annular 
pancreas

14 16 35 28 4 40

No Annular 
Pancreas

5 16 11 28 1 30

Toxic 48 53 166 99 9 90

No Toxic 12 53 2 99 4 60
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MIRC and MyPacs return the exact same teaching files as with “cardiomegaly,” 
meaning that the negation term was not considered in the query. Using the SNOMED 
CT ontology, the IRIS 1.1 search replaced “no cardiomegaly” with “normal heart” as 
“cardiomegaly” is defined as “morphologically abnormal structure of the heart”. IRIS 
1.1 also extended the search with “heart size normal” and retrieved 11 results from 
MIRC and 72 from MyPacs datasets. These results include a different set of cases and 
must not return “cardiomegaly” cases (which we manually verified). Only two cases 
from our negation-based search matched with the original “cardiomegaly” search; the 
overlap occurred because discussion referred to “usually normal heart” (i.e., accidental 
overlap that can be eliminated as a false-positive with additional analysis). Even if 
other search engines were to consider negation, searching for teaching files that do 
not include “cardiomegaly” is not the right strategy –an ontology is necessary to find 
correct results by considering antonyms. Google search showed 7 and 64 results for 
MIRC and MyPacs site search, respectively.

There is an overlap between the IRIS 1.1 and MIRC search with one teaching 
file and two teaching files with MyPacs. All these teaching files mention “normal 
heart” in a different context (in addition to “cardiomegaly”), thus we consider this 
a false positive. For example, in MIRC dataset we had one overlapping teaching file 
“D-Transposition of the great arteries”; on closer inspection we observed that “normal 
heart” and “cardiomegaly” were part of the discussion category in which radiologists 
wrote “the CXR may appear normal, with usually a normal heart size … the CXR 
may demonstrate mild cardiomegaly…”

We manually inspected all search engine results, including IRIS 1.1 results, and 
found that the teaching files retrieved by IRIS 1.1 were more relevant to the “no 
cardiomegaly” query as compared with the other search engines. IRIS 1.1 furthermore 
showed an improvement in number of teaching file matches over the previous IRIS 
1.0 (IRIS 1.0 returned 54 cases, while IRIS 1.1 retuned 83 teaching cases) because of 
the integrated ontologies. We note that MyPacs returns more results than any other 

Figure 4. Comparison of negation for “cardiomegaly” (the circles represent the sets of retrieved results and their 
overlapping sections show the counts of teaching files in the intersection, and the star indicates improvement in 
number of results)
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engine because it will always search for individual terms even if the search phrase is 
given in quotation marks.

From this comparative study we concluded that the MIRC, MyPacs, and even 
Google do not accurately distinguish between search terms with and without negation. 
Our search engine recognizes the presence of negation in search terms and retrieves 
teaching files that are different from matches without negation. Not all query results 
from IRIS 1.0 could be improved; for example, even though IRIS 1.1 augmented “No 
ACL Tear” with “No tear of ACL” and “No anterior cruciate ligament tear,” even 
after applying stemming and considering antonyms, no new cases matched the search.

4.3. Synonym Coverage in RadLex and SNOMED CT Ontologies
To further validate query expansion and qualify the importance of considering 
synonyms in query search, we performed a study to determine synonym coverage in 
different ontologies (summarized in Table 6). We used a total of 28 queries from a major 
medical university and our own related literature survey. For these 28 queries, RadLex 
has synonyms for 9 queries (covering 32% with synonyms), while SNOMED CT has 
synonyms for 18 queries (covering 64% of our search terms). A union of the RadLex 
and SNOMED CT ontology results provides synonym coverage for 75% of our query 
dataset. SNOMED CT also has more than one synonym for most of the terms compared 
to RadLex ontology. RadLex has 3 overlapping terms (Brachiocephalic vein, Truncus 
brachiocephalicus, Malignant hemangioendothelioma for terms Innominate vein, 
Innominate artery, Malignant hemangioendothelioma, respectively) with SNOMED CT. 
Out of 18 synonyms from SNOMED CT only 3 synonyms overlap, while the other 4 
terms have different synonyms (Bronchus intermedius, Appendicitis, Chiari, Cystitis). 
This demonstrates that both ontologies are important, and that a search engine is less 
effective when relying on just one integrated ontology.

RadLex encompasses approximately 50% of SNOMED CT synonyms terms for 
these queries, which suggests opportunities for expanding RadLex content. This lack 
of coverage can be overcome by combining RadLex with other medical lexicons such 
as SNOMED CT. Coverage with SNOMED CT ontology is 50% higher than that of 
RadLex for these 28 queries.

4.4. User Study for IRIS 1.1 Evaluation
We performed a user study evaluation of IRIS 1.1 results with 5 queries (ACL Tear, 
Bronchus intermedius, Mega cistern magna, Angiosarcoma, and No Angiosarcoma). 
We chose queries that return few results (as evaluating relevance of a large result 
set is less informative); same queries also resulted in very few teaching files in the 
original IRIS 1.0 search. We collected scores for all 5 queries from our 4 evaluators 
and averaged these results (Table 7).

Average relevance score of these 5 queries (considering the top 3 results from 
each query) was 2.6. For “Bronchus intermedius” query, none of the teaching files 
had “Bronchus intermedius” in findings or diagnosis category, limiting achievable 
search relevance results to at most 2. This term is an anatomical structure, so the 
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results retrieved by IRIS 1.1 were about the diseases related to this anatomical 
structure. The rest of the queries scored in the range of 2 to 4. From our analysis 
we concluded two important things. First, a teaching file database is a supplemental 
learning resource and not a comprehensive decision support system which can offer 

Table 6. Synonyms in RadLex and SNOMED CT ontologies

Term Radlex Synonyms SNOMED CT Synonyms

Tracheal dilation - Bronchoscopy with tracheal dilation

Cardiomegaly - Enlarged heart, cardiac enlargement

Bronchus intermedius Interlobar bronchus Truncus intermedius of right main bronchus

Innominate vein Brachiocephalic vein, vena 
brachiocephalica

Injury of innominate vein, brachiocephalic vein

Innominate artery Truncus brachiocephalicus, 
brachiocephalic artery

Brachiocephalic artery, brachiocephalic trunk, 
truncus brachiocephalicus

Acl tear Tear of acl -

Study - Study

Appendicitis Appendizitis Ecphyaditis

Hepatic adenoma - Liver cell adenoma, hepatocellular adenoma

Annular pancreas - Annular pancreas

Varicocele - Venous varices, pampinocele

Perthe - Pseudocoxalgia

Chiari Hindbrain hernia Congenital abnormality

Angiosarcoma Malignant hemangioendothelioma, 
angiosarkom

Malignant hemangioendothelioma, hemangio-
sarcoma, hemangio-endothelial sarcoma, 
haemangiosarcoma

Mega cisterna magna - Mega cisterna magna

Baastrup disease Lumbar interspinous bursitis -

Vertebra - Structure of vertebra

Cystitis cystica - Cystitis cystic

Cystitis Zystitis Bladder infection

Cystitis glandularis - Cystitis glandularis

Table 7. Evaluation results (X ̄ ± σ: X ̄ = average of ratings, σ = standard deviation between ratings)

Query X̄ ± σ Maximum Variation Between 
Ratings

ACL Tear 4 ± 0.5 1

Bronchus intermedius 3 ± 0.5 1

Mega cistern magna 2 ± 0.7 2

Angiosarcoma 2 ± 0.5 1

No Angiosarcoma 2 ± 0.8 2
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an exact diagnosis. Teaching file databases can serve as reference resources to 
augment the diagnostic interpretation process. Moreover, we observed that query 
terms often appeared in the discussion category (rather than diagnosis category) 
because this is where the radiologists provided their opinion about the diagnosis. 
For example, for “angiosarcoma” query retrieved results contained the “Pulmonary 
zygomycosis” diagnosis; however, the discussion stated “…a broad spectrum of 
disease processes have been associated with the halo CT sign including vasculitic 
entities, angiosarcomas…” Search query term matching diagnosis category is the most 
relevant teaching file, yet discussion or history of the patient matching the search is 
also useful for radiologists to learn more about similar cases. Our second important 
observation was that we still have a limited set of data integrated into IRIS 1.1. Our 
aim is to provide a larger integrated repository with many teaching cases, so for future 
IRIS 1.1 versions we are going to continue integrating other publicly available data 
sources such as EURORAD and GoldMiner.

5. CONCLUSION AND FUTURE WORK

Currently, radiologists at best have access to an ad-hoc internal search engine that 
helps them find the internal teaching files available at their hospital. The reference 
coverage of internal engines is limited to the in-house teaching files and lacks the 
desired advanced analytical search capabilities. To our knowledge, none of the available 
engines provide radiologists with the ability to integrate in-house data with other 
data sources, even if these sources are publicly available and rich in medical content.

In this paper, we described a database and search framework for heterogeneous data 
integration to facilitate medical knowledge extraction from publicly available teaching 
file repositories. IRIS 1.1 supports negation and query expansion through synonyms; 
the integration of SNOMED CT ontology further improved results by enhancing 
synonyms dictionary. We are currently improving our search by incorporating the 
context of search into the query and ranking. Furthermore, we are improving IRIS 1.1 
results by (increasingly) weighting ontology terms and considering co-occurrence of 
terms that appear frequently with query terms which will also lead to context-aware 
search. For future implementation versions, we are working on improving results by 
considering hierarchical structure of terms (e.g., “cardiomegaly” is a case of “enlarged 
heart”) and proximity of words in search augmentation, that will further expand 
“cardiomegaly” with “heart problem” and “cardiac failure”.

Based on our evaluation, we found that the IRIS 1.1 improves results in two ways: 
1) search queries produce more relevant results compared with the existing search tools, 
and 2) results from multiple data sources can be merged into a single easy-to-query 
and interpret data source. Furthermore, our search engine can be hosted on a cloud to 
improve processing performance in a distributed computing environment. Our current 
implementation can be accessed through a prototype website and allows integration 
with additional ontologies and data sources for in-house use by other institutions.
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Although our current implementation uses text-based search for images and 
teaching files, the existing database schema makes it easy to incorporate image-
based search using image features derived from pixel content. We also plan to add 
functionality to the IRIS 1.1 enabling radiologists to mark regions of interest and 
create image annotations. In the long run, our search engine will provide capabilities 
for both text and image search that will be tailored for a variety of users, including 
radiologists, radiology residents, clinicians, and patients.
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